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Abstract The spectroscopic and electrochemical prop-
erties of blue copper proteins are strikingly different
from those of inorganic copper complexes in aqueous
solution. Over three decades ago this unusual behav-
ior was ascribed to constrained coordination in the
folded protein; consistent with this view, crystal struc-
ture determinations of blue proteins have dem-
onstrated that the ligand positions are essentially
unchanged on reduction as well as in the apoprotein.
Blue copper reduction potentials are tuned to match
the particular function of a given protein by exclusion
of water from the metal site and strict control of the
positions of axial ligands in the folded structure.
Extensive experimental work has established that the
reorganization energy of a prototypal protein, Pseudo-
monas aeruginosa azurin, is ~0.7 eV, a value that is
much lower than those of inorganic copper complexes
in aqueous solution. The lowered reorganization
energy in the protein, which is attributable to con-
strained coordination, is critically important for func-
tion, since the driving forces for electron transfer
often are low (~0.1 eV) between blue copper centers
and distant (>10 A) donors and acceptors.

H.B.G. and R.J.P.W. dedicate this paper to the memory of our
colleague, Bo Malmstrom, who passed away on 9 February 2000.
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Introduction

In the period from 1950 to 1960 it was apparent that
the properties of many metal and organic groups
inside proteins were not those expected from common
experience in chemistry. In this article we shall exam-
ine a particular example, that of copper in the blue
proteins, so as to show how different views, sometimes
apparently conflicting (see [1, 2] for reviews), can be
brought to focus on underlying features of these unu-
sual sites created by the nature of the proteins which
contain them. We start by giving a description of the
unusual character of this copper site while relating it
to its functional role, before offering an explanation as
to how the protein generates the special coordination
environment. Throughout the paper we will keep in
mind that the function of the copper is to facilitate
electron transfer between reactants.

The blue copper proteins catalyze redox reactions
in organisms ranging from bacteria to humans.
Between 1950 and 1960, two properties of these pro-
teins were discussed repeatedly at conferences and in
publications [1-3]. One was the anomalously high
reduction potential with respect to inorganic copper
complexes in aqueous solution, and the second was
the intense absorption at around 600 nm, giving rise
to the blue color; in a survey paper, one of us attrib-
uted the high potentials to steric hindrance at the
copper site, which would give a tetrahedral geometry,
and it was suggested that the blue color was due to
copper-ligand charge-transfer absorption [3]. (Later it
was proposed that the ligand was a thiolate [4].) These
features were assumed to generate good electron
transfer properties, but this was not quantified. How-
ever, there was also uncertainty about the ground
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state of copper in these proteins [3]. The uncertainty
arose because the electron distribution in the ground
state could have been either Cu?>*-L~ or Cu*-L°. (At
that time there was considerable debate as to how to
describe oxidation states in highly covalent complexes
[5].) New methods of study were clearly required.
Moreover, there was the need to offer an explanation
of how such an apparently unusual copper-thiolate
complex arose, including mechanisms of its formation.

One method that could be used to determine the
ground state was EPR spectroscopy; this method, then
relatively novel in biochemical studies, was employed
by Malmstrém and Vinngérd [6] in 1960 to show that
the blue copper proteins exhibited a most unusual
ground-state EPR spectrum. The observation stimu-
lated much heated discussion as to its causes. One
possibility was that it was due to anomalously strong
covalency, no matter what its source [6]; another was
that it arose from a near tetrahedral geometry [3, 4].
The implication of the covalency was that the
unpaired electron was spread over the ligands, giving
obvious advantage in electron transfer reactions.

A little later, while discussing the unusual charac-
teristics of Cu(Il) in these proteins, one of us revived
an earlier general hypothesis of Lumry and Eyring,
not previously applied to single metal ion sites, that
unusual properties could be induced by a “rack mech-
anism” [7]. This was a distinctly different approach to
that in references [3] and [4], that the condition of the
copper was due to a simple misfitting of copper to the
stereochemistry imposed by the protein, since it is
based on a mechanism for formation of the site. What
was common to these views was that there were con-
straints at the copper site and that these constraints
had functional value, which gave rise both to the tun-
ing of the reduction potential and a lowering of the
reorganization energy for electron transfer. The posi-
tion with regard to both unusual organic and inorganic
sites in proteins was brought together in a 1968 paper
by Vallee and Williams [8] on the “entatic state”.

In the 1970s, a much more detailed spectroscopic
investigation of blue copper proteins established the
charge-transfer nature of the blue color [9]. In addi-
tion, the discovery of ligand-field bands in the near-in-
frared region strongly indicated the geometry to be
pseudo-tetrahedral [9]. Shortly thereafter, a crystal

structure analysis of poplar plastocyanin confirmed
that the blue site had an unexpected geometry, which
we analyze below, and that the copper was bound by
a thiolate and two histidine residues with a very dis-
tant methionine sulfur providing a possible fourth lig-
and [10]. Moreover, the protein was a f-sheet, which
was believed to give a rigid construct that would fix
the reduction potential and minimize the nuclear reor-
ganization required for electron transfer. However,
none of these studies investigated in a quantitative
manner the presumed relationship of the structure and
thermodynamic properties to the catalytic action.

Function

Although all blue copper proteins act as electron
transfer agents, their functions vary according to the
donor/acceptor reactions they mediate (Table 1)
[11-16]. Several blue proteins mediate electron flow
between substrates (donors) and dioxygen in the
scheme:

Substrate(donor) < Cucenter —— Acceptor(O,) (1)

Other examples involve electron transfer in photosyn-
thetic chains. We can assess the functional value of a
copper center in catalyzing electron transfer under dif-
ferent circumstances by looking at the factors that
control the transfer rates, kgp [17]. The key param-
eters are given in the semiclassical expression of Eq. 2:
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Here AG° is the standard free energy of the reaction
(the difference in the reduction potentials of the sites),
A is the reorganization energy required for electron
transfer, and H,p is the electronic coupling matrix
element. During the last 20 years, much work has
been done to obtain experimental values for the vari-
ables in Eq. 2. It has been shown that the factor H3p
is related roughly to the distance which the electron
must travel between donor and acceptor through the
protein [17-23]. Whatever the coupling mechanism,
the role of the nuclear factor is clear. When the expo-
nential term is unity (4G °+1=0), electron transfer

Table 1 Reduction potentials (mV vs. NHE) of blue copper proteins and their electron donors and acceptors

Protein Potential Donor Potential Acceptor Potential
(pH) (PH 7) (pPH 7)

P. nigra plastocyanin 370 (7.5) cyt f 340 P700* 490
Thiobacillus ferrooxidans rusticyanin® 680 (1-3) sulfatoiron(II) (pH 2.0) =650 cyt a (Oy) (820)
human ceruloplasmin 490, 580 (5.5) iron(IT) complexes <300° type 3 Cu (O,) (820)
Rhus vernicifera laccase 394 (7.5) phenols <300° type 3 Cu (O,) 434 (820)
Polyporus versicolor laccase 785 (5.5) phenols <300° type 3 Cu (O,) 782 (820)
C. pepo medullosa ascorbate oxidase 344 (7.0) ascorbate 2954 type 3 Cu (O,) 344 (820)

aSee [54]
"Ligation-dependent potentials

‘Wide range of potentials
dE° for Asc+H*+2e »HAsc
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Protein Coordination PDB code E° (mV vs. NHE)
A. xylosoxidans azurin 1 (pH 8.0)° 5 [N,S(OS)] trigonal bipyramidal 1RKR [57] 305 (pH 7.5)
(251 A,3.18 A)
A. xylosoxidans azurin II (pH 6.5) 5 [N,S(OS)] trigonal bipyramidal 1ARN [58] 305 (pH 7.5)
(275 A, 326 A)
P. aeruginosa azurin (pH 9.0)? 5 [N,S(OS)] trigonal bipyramidal 5AZU [59] 293 (pH 8.0)
(2 93 A, 3.13 A)
P. aeruginosa azurin (pH 5.5)* 5 [N,S(OS)] trigonal bipyramidal 4AZU [59] 310
(2 97 A, 3.15 A)
P. fluorescens azurin 5 [N,S(OS)] trigonal bipyramidal 1JOI [60] -
(2.99 A, 323 A)
A. denitrificans azurin (pH 5.0) 5 [N,S(OS)] trigonal bipyramidal 2AZA [61] 285
(3‘13 A, 311 A)
P. putida azurin (pH~7)? 5 [N,S(OS)] trigonal bipyramidal INWP [62] 295¢
(3 14 A, 3.01 A)
C. sativus stellacyanin NZSO] distorted tetrahedral 1JER [63] 260
A. denitrificans (M121Q)azurin® 4 [N,SO] distorted tetrahedral 1URI [64] 263
A. demmﬁcam (M121H)azurin (pH 3. 5)““ 4 [N,SO] distorted tetrahedral 1A4C [65] 350
P. aeruginosa (M121E)azurin (pH 6.0)* 4 [N,SO] distorted tetrahedral 1ETJ [66] 220 (pH 7.0)
cucumber basic protein 4 [(N,S)(S)] trigonal pyramidal (2.60 A) 2CBP [67] 317
A. xylosoxidans nitrite reductase 4 [(N,S(S)] trigonal pyramidal (2.62 A) 1BQ5 [68] 280 (pH 7.0)
A. xylosoxidans nitrite reductase® 4 [(N,S(S)] trigonal pyramidal (2.63 A) INDT [69] 260 (pH 7.0)
S. sp. PCC 6803 (A42D, D47P, A63L) 4 [(N,S(S)] trigonal pyramidal (2.64 A) 1PCS [70] 325
plastocyanin®®
M. extorquens pseudoazurin 4 [N,S(S)] trigonal pyramidal (2.66 A) 1PMY [71] 260 (pH 7.0)¢
U. pertusa plastocyanin 4 [N,S(S)] trigonal pyramidal (2.69 A) 1IUZ [72] 363 (pH 7.0)
P. laminosum plastocyanin (pH 6.0)2" 4 [N,S(S)] trigonal pyramidal (~2.7 A) 1BAW [73] -
A. cycloclastes pseudoazurin 4 [N,S(S)] trigonal pyramidal (2.70 A) 1ZIA [74] 260 (pH 7.0)
A. faecalis pseudoazurin (pH 7) 4 [N,S(S)] trigonal pyramidal (2.71 A) 8PAZ [75] 269
P. aeruginosa (M121A)azurin (pH 5.1)P 4 [N,S(O) trigonal pyramidal (2.74 A) 2TSA [76] 373
S. pratensis plastocyanin® 4 [N,S(S)] trigonal pyramidal (2.74 A) 1BYO [77] -
A. faecalis pseudoazurin (pH 6.8) 4 [N,S(S)] trigonal pyramidal (2.76 A) 1PAZ [78] 269
P. nigra plastocyanin (pH 6.0) 4 [N,S(S)] trigonal pyramidal (2.82 A) 1PLC [79] 370 (pH 7.5)
C. pepo medullosa ascorbate oxidase (pH 5.5)? 4 [N,S(S)] trigonal pyramidal (2.86 A) 1A0Z [80] 344
T. ferrooxidans rusticyanin (pH 4.6) 4 [N,S(S) trigonal pyramidal (2.88 A) 1RCY [81] 680
S. oleracea (G8D)plastocyanin (pH~4.4) 4 [N,S(S)] trigonal pyramidal (2.88 A) 1AG6 [82] 379
C. reinhardtii plastocyanin 4 [N,S(S)] trigonal pyramidal (2.89 A) 2PLT [83] -
P. denitrificans amicyanin (pH 5-6) 4 [N,S(S)] trigonal pyramidal (2.91 A) 1AAC [84] 294
E. prolifera plastocyanin 4 [N,S(S)] trigonal pyramidal (2.92 A) 7PCY [85] 369 (pH 7.0)
D. crassirhizoma plastocyanin (pH 4.5) 4 [N,S(S)] trigonal pyramidal (2.94 A) 1KDJ [86] 387 (pH 7.0)
Human ceruloplasmin (Cu41, Cu61)® 4 [N,S(S)] trigonal pyramidal (~3.0 A) 1KCW [87] 490, 580
C. cinereus laccase (type-2 Cu depleted)® 3 [N,S] trigonal planar 1A65 [88] 550
Human ceruloplasmin (Cu21)® 3 [N,S] trigonal planar 1KCW [87] >1000 [Cu(I)] site'
2Average copper-ligand bond lengths are reported in cases 9IRef. [55]
where there are multiple molecules in the crystallographic asym-  °Kohzuma T, personal communication
metric unit Ref. [56]

bResolution lower than 2 A
‘Molecules C and D only; molecules A and B have the same
coordination as observed at pH 6.5 (see [65])

rates will be high (kgy >10°s™! for donor-acceptor dis-
tances <10 A). Rates >10° s! are much higher than
observed catalytic rates, so A does not have to be rig-
orously controlled. However, in most of the reactions
set out in Table 1, there is one step where the distance
between donor and acceptor is >10 A. In these long-
range reactions, the coupling-limited kgp values could
be <10° s7! and therefore the nuclear reorganization
must be minimized (A<1 eV) if reasonable rates are to
be ensured at low driving forces (~0.1 eV). The way
in which this can be brought about is by constraining
the structure of the copper site. We therefore examine
the problem of the function of blue copper sites start-
ing from structures. On the basis of the structures and

model reference states, we analyze two critical param-
eters, reduction potentials and reorganization energies.
We then draw our conclusions.

Structure

The functional efficiency of copper in blue proteins
can be related to the structures of ground and acti-
vated states involved in its biological reactions. Sev-
eral ground states have been fully characterized by
electronic structure calculations, spectroscopy, and
X-ray crystallography (Tables 2 and 3) [10-16, 24-30].
As far as coordination structures are concerned, we
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conclude that: (1) all ground states have three strong
ligands (two imidazole-N; one thiolate-S); (2) there
may be a weaker fourth or fifth ligand, but this is not
required for a blue site; (3) trigonal planar coordina-
tion of the three strong ligands to the copper is not an
essential feature; and (4) the structural features are to
a large degree independent of oxidation state [i.e.,
Cu(I) and Cu(Il) have virtually identical coordina-
tion].

In order to make comparisons with structures other
than proteins, we asked C.K. Prout (Oxford) to search
the Cambridge Structural Database System for all
copper complexes having a CuSC fragment. This
search was updated and then restricted to CuSC(NN)
complexes by W.P. Schaefer (Caltech) in January,
1999. Schaefer examined 105 compounds containing

monodentate, bidentate, and tridentate ligands (Table
4). Of the 77 Cu(Il) structures, 61 are tetragonal (17
square planar; 27 square pyramidal; 17 square bipy-
ramidal), 11 are trigonal bipyramidal, and 5 are tet-
rahedral. (The first example of a trigonal planar
Cu(II)(NNS) structure was reported later in the year
[31].) Of the 28 Cu(I) complexes, 18 are tetrahedral
and 10 are trigonal planar. The message is clear: inor-
ganic Cu(II) favors tetragonal coordination, whereas
Cu(I) strongly prefers tetrahedral and trigonal planar
geometries (Fig. 1).

Insight into these structures has been gained from
high-level calculations of optimal geometries of blue
copper coordination units in vacuum [24, 28]. We
admit that we are surprised by the results — the
derived structures are close to the observed coordina-

Table 3 Metal-ligand bond distances (A)

P. aeruginosa azurin
Cu(II) (pH 5.5)*
Cu(I) (pH 5.5)*
Cu(II) (pH 9.0)*
Cu(I) (pH 9.0)*
Co(IT)?

Ni(I1)*

Zn(I1)2¢

A. denitrificans azurin
Cu(II)

Cu(I)

Cd(1I1)

P. nigra plastocyanin
Cu(II) (pH 6.0)
Cu(I) (pH 7.0)

Cu(I) (pH 7.8)°
Hg(1I)

S. sp. PCC 7942 plastocyanin
Cu(II) (pH 5.0)
Cu(I) (pH 5.0)

D. crassirhizoma plastocyanin
Cu(Il) (pH 4.5)
Cu(I) (pH 4.5)

A. faecalis S-6 pseudoazurin
Cu(II) (pH 6.8)

Cu(I) (pH 7.8)

Cu(II)

Cu(I) (pH 7.0)

A. cycloclastes pseudoazurin
Cu(II) (pH 6.0)
Cu(I) (pH 6.0)

T. ferrooxidans rusticyanin
Cu(1II) (pH 4.6)

Cu(I)

Cu(I)°

Cu(I) (pH 3.4)¢

Ascorbate oxidase

Cu(II) (pH 5.5)*
Cu(I)ﬂ.C

M-N?! (His46)
2.08
2.14
2.06
2.14
2.32
223
2.01

M-N®! (His46)
2.08
213
2.25

M-N®! (His37)
1.91
2.13
2.12
234

M-N°! (His37)
1.97
2.09

M-N°! (His37)
1.9
1.95

M-N®! (His40)
2.16
2.16
2.01
2.10

M-N®! (His40)
1.95
2.04

M-N°! (His85)
2.04
222
2.14
2.09

M-N®! (His445)
211
2.12

M-S” (Cys112)
224
225
2.26
227
2.20
2.39
2.30

M-S” (Cys112)
2.15
226
238

M-S? (Cys84)
2.07
2.17
2.11
2.38

M-S” (Cys84)
2.01
237

M-S” (Cys87)
223
221

M-S” (Cys78)
2.16
2.17
2.13
2.17

M-S” (Cys78)
2.13
2.19

M-S? (Cys138)
2.26
225
226
2.16

M-S” (Cys507)
2.08
2.14

M-N°! (His117) M-S? (Met121) M-O (Gly45) PDB code
2.01 3.15 2.97 4AZU [59]
2.04 2.97 3.15 [16]°

2.03 3.13 2.93 5AZU [59]
2.15 3.10 3.17 [16]°

225 3.49 2.15 1VLX [89]
222 330 2.46 [90]°

2.07 34 232 [o1]°
M-N°! (His117) M-S? (Met121) M-O (Gly45) PDB code
2.00 311 3.13 2AZA [61]
2.05 323 322 [92]°

221 323 2.76 1AIZ [93]
M-N°! (His87) M-S? (Met92) PDB code
2.06 2.82 - 1PLC [79]
239 2.87 - SPCY [79]
225 2.90 - 4PCY [94]
236 3.02 - 3PCY [95]
M-N°! (His87) M-S? (Met92) PDB code
2.14 2.93 - 1BXU [96]
2.17 2.80 - 1BXV [96]
M-N°! (His90) M-S? (Met95) PDB code
2.06 2.94 - 1KDJ [86]
2.10 291 - 1KDI [86]
M-N°! (His81)  M-S? (Met86) PDB code
2.12 2.76 - 1PAZ [78]
2.29 291 - 1PZA [97]
2.01 271 - SPAZ [75]
231 2.82 - 3PAZ [75]
M-N°! (His81)  M-S? (Met86) PDB code
1.92 2.71 - 1BQK [98]
2.11 2.85 - 1BQR [98]
M-N! (His143) M-S? (Met148) PDB code
1.89 2.89 - IRCY [81]
1.95 2.75 - 1A3Z [81]
2.06 2.90 - 1A8Z [99]
1.90 2.60 - 1CUR [100]
M-N°! (His512) M-S? (Met517) PDB code
2.08 2.86 - 1AOZ [80]
2.08 2.95 - 1ASO [101]

Resolution lower than 2 A

2Average metal-ligand bond distances are reported in cases
where there are multiple molecules in the crystallographic asym-
metric unit

®Atomic coordinates have not been deposited with the Protein
Data Bank, Brookhaven National Laboratory

dINMR solution structure
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Core (additional
donor atoms)

Coordination
number

Geometry

Cambridge structural database system codes?
(additional donor atoms)

6 Cu(IT)N,S(XYZ) Square bipyramidal

Cu(IT)N,S(XY) Square pyramidal

Trigonal bipyramidal

Cu(I)N,S(X) Square planar

Tetrahedral

Cu(I)N,S(X) Tetrahedral

Cu(I)N,S Trigonal planar

COGNANOI (SSS); HAZKAU (0OO); JETMIE (SNN); JUXTIF
(SNN); PANPID (SOO); PEWWET (SCICl); PEWWIX (SCICI);
PITUCU (SOO); SEYNOZ (SNN) (3);> VUWGUP (SNN);
VUWHAW (SNN) (2):* CIYNAZ (000): FICVIW (NNS):
NAHDEF (SNN); PIATCU (SOO); RACMAIJ (SO0) (2);
SOFXUG (000)

BPYTCU (NN); BULTUX (NN); COHHIQ (NN); JECXEU
(NN); ROQDEG (ON) (1);* TIVTAT (NO); TPAECU (0O);
ZEDNIF (00); FENMEQ (00); FENMIU (0O); FIPFOZ (00)
(2);> GERPAU (00); GLXZCU (CICl); KEXVAC (ON);
KEXVEO (NN); KUTSOH (SO) (4);" LESTIM (CICl); LEYXUI
(SCI); RIHMOK (NO); RONBOL (00) (2);" SAHDOU (NN);
SODZIU (NN); SOFXDA (00); TIMQEL (SCl); TOQFAG
(BrBr); VOBSAG (00); ZEBLIB (CICI)

MAECUT (00); PLTUCU (NN); RUQLOE (NO); TIVTEX
(NO); KUCZEN (NO); LEYYAP (BrS); NEGWUR (0O);
NIVDAX (NN); RUTBAJ (NN); RUTBEN (NN); ZAMCUL
(NN)

COGMUG (8); CXTPAC (S); LESBAM (S); MEQUCUI1O0 (S);
NAQPAW (N); QQQDSX02 (S); CONBUC (O); FIPFOZ (O)
(2);> HEDSAK (Br); NEGXAY (O); NUXOT (Br); VEPFAXI10
(O); VEPFEB10 (O); WEWSAS (Br); YUNRII (Br); ZEBLEX
(Cl); ZOWRAE (O)

CIWVIN (S); FONXIP (S); SOFXOA (0); PANDAJ (N);
TMCTCU (S)

BUYBAY (S); CEWYOSI0 (S); CUHBAI (N); CUHBOW (N)
(2);> CUHBUC (N); DIYKOL (S); GIKDUZ (P); HEFJIL (S)
(1);> JADDUN (8); NIRJED (P) (1);> PBTUCU (S); PYDSCU10
(N); RISWEV (S);® SISFEF (8S); SISFIJ (S); TOYBOY (S) (1);
YINJIO (S); NBTPCU (N)

CUGZUZ; HICVIY; JONZOB; NILBEP; NILBIT; PAFZUR;
VETFEF; YOMJOZ (1);> YOMJUF (1);> BETYUU

2Codes as listed in January, 1999

35

30

251

201

151

Number of Structures

10f

(4]

D L

Fig. 1 Coordination geometries of the inorganic copper com-
pounds examined by W.P. Schaefer: Cu(II), gray; Cu(l), black

°In structures with more than one copper atom in the asymmet-
ric unit, the number of structures with the given geometry is
listed in parentheses

tion geometries in blue proteins. It is obvious, howev-
er, that a realistic calculation of the structure must
take into account the protein dielectric by inclusion of
the environment around the site. Most importantly,
the quantities that are relevant to function are redox
free energies and reorganization energies at temper-
atures in the neighborhood of 300 K. Such quantities
cannot be obtained from calculations of electronic
potential surfaces of isolated complexes.

The effect of the folded protein structure on copper
coordination is apparent upon examination of the
bond distances set out in Table 3. Within the error of
crystallographic measurement, there is very little
change in the Cu(NNS) coordination core upon reduc-
tion of Cu(Il) to Cu(I). What is exceedingly telling is
that the structures of poplar apoplastocyanin [32], P.
aeruginosa apoazurin (in one form in which there are
probably 2H* ions in the site) [33], A. denitrificans
apoazurin [34], and P. denitrificans apoamicyanin [35]
are closely similar to those of the corresponding
holoproteins. Taken together, these data show con-
vincingly that the protein fixes the geometry of the
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site. We describe the constraints more fully below, but
conformational changes of measurable significance are
not apparent in the electron transfer step nor in the
insertion of the metal ion.

Reduction potentials

We will start from known reference states in models
as far as this is possible. James and Williams [36]
showed that reduction potentials relative to the
Cu(II)/Cu(I) aquated ions are dependent on: (1) the
type of ligand (nitrogen m-acceptors and sulfur donors
generally raise the potential; anionic ligands lower the
potential); and (2) steric hindrance (distortion of the
coordination sphere tends to increase the potential,
especially in cases where the geometry is forced
toward tetrahedral).

Subsequently, many authors have pointed out that
all metal redox couples have high potentials in hydro-
phobic sites if the redox centers are positively charged
[37, 38]. Thus, the trigonal core of three donors (NNS)
in a blue copper complex of unit positive charge will
be unfavorable for Cu(Il) and therefore will generate
a high potential. When placed in the low dielectric
medium of the protein the potential can only be raised
further. Accordingly, we shall assume that the high
potentials of ceruloplasmin and fungal laccase (Table
1) are typical of the Cu(NNS) core in the absence of
any further ligation. The significance of these high
potentials in reactions will be discussed below. Here
we concentrate on the fact that some of the potentials
are much lower and one (R. vernicifera stellacyanin:
184 mV) [39] is almost as low as that of the aquated
ion.

Based on extensive spectroscopic work, Solomon
and co-workers [26, 29] have suggested that con-
strained coordination regulates the axial interactions
in blue proteins. The role of axial ligation in tuning
reduction potentials has been established by a combi-
nation of mutagenesis and X-ray structural results
[39—41]. Hydrophobic residues in the axial positions
raise the potential (fungal laccase), whereas strong O
ligands, for example, in the azurin Met121Glu mutant,
lower it. Relatively strong axial ligation is found in
stellacyanin, which has one of the lowest potentials.
Axial ligation is somewhat weaker in native azurin,
which has long methionine S-Cu(II) and carbonyl
O-Cu(II) distances. The carbonyl O-Cu(II) interaction
is much weaker in plastocyanin, and the potential is
somewhat higher. Also, in rusticyanin, the protein fold
forces the carbonyl oxygen to point away from the
Cu(II) ion; in this very hydrophobic site, the potential
is even higher (680 mV). In summary, the protein fold
in blue copper proteins encapsulates the metal in sites
of different degrees of hydrophobicity and with vary-
ing availability of axial ligands, and these effects of
the native fold regulate the reduction potentials most
powerfully against a background set by the positions

of the major ligands. We recognize, of course, that
other factors [42-46], especially site exposure to sol-
vent [43], also can modulate the potentials of blue
proteins.

The large range of reduction potentials in blue
copper proteins is a result of evolutionary pressure,
since it matches differential biological functions of the
individual proteins (Table 1). In the photosynthetic
transport chain cytochrome f-plastocyanin-P700*, for
example, the potential of the blue protein (370 mV)
falls between that of the cytochrome (340 mV) and
P700* (490 mV). Thus the thermodynamic properties
of copper are constrained to match function.

Reorganization energies

Since, as shown above, the reduction potentials of
blue copper proteins fit closely between those of their
respective donors and acceptors, the driving forces for
one or other of the biologically relevant reactions are
often relatively small, say as low as 0.1 eV; at such
driving forces, and given the distances to one or other
of the reactants is >10 A, rapid long-range electron
transfer is possible only if the nuclear reorganization
energy is below 1 eV. Nature had to deal with this
problem in order to use copper for electron transport
because, unlike hemes, copper redox couples in
aqueous solution have A>1 eV, owing to the large
structural changes that accompany Cu(II)/Cu(I) redox
reactions. (One system that has been analyzed in
detail is [Cu(phen),]***, where A is 2.4 eV [44].) By
placing a copper complex in a constrained protein
environment, however, the overall nuclear reorganiza-
tion energy is dramatically lowered [44], as depicted
in Fig. 2. Indeed, extensive experimental work on Ru-
modified P. aeruginosa azurin has fixed 1 between 0.6
and 0.8 eV [47, 48], with the latter value established
as a rigorous upper limit by the observation of rapid
Cu(I) to Ru(III) electron transfer at cryogenic temper-
atures [48]. Since A(Ru)~0.7 eV, /(azurin) also must
be ~0.7 eV [47]. Thus the azurin [Cu(Il)/Cu(I)] reor-
ganization energy is more than 1 eV lower than typi-
cal A values for self-exchange reactions of inorganic
copper complexes in aqueous solution.

It is our view that protein-enforced constraints are
an important factor in the overall lowering of the
reorganization energy of blue copper relative to that
of an unconstrained complex with the same ligand set.
The lowering of A in a blue protein can be attributed
to two main constraining factors: one is the exclusion
of water from the copper site in the folded polypep-
tide; and the second is the inner-sphere coordination
inside the rigid hydrophobic cavity [44, 49]. We might
be able to assess the relative importance of those two
factors if we knew the A(inner) and A(outer) contribu-
tions to A(total). Calculations by Ryde and co-workers
[28, 50] on the optimal vacuum geometries of blue
copper model sites give 0.6 eV for A(inner). What is
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Fig. 2 Constrained coordination is enforced in the folded poly-
peptide structure; it enhances the activity of the copper ion in
reactions that define or generate the biological function of the
protein. The free energy profiles (free energy versus dimension-
less reaction coordinate Q) for [Cu(phen),]*** and azurin
Cu(II)/Cu(I) self-exchange reactions in aqueous solution show
that the nuclear reorganization energy for electron transfer
between Cu(II) and Cu(I) is much smaller for the protein

needed, however, is a first principles calculation of a
blue copper reorganization energy that includes all
inner-sphere and outer-sphere (protein and solvent)
contributions.

Other copper proteins

It is obvious that if, as we state, the blue copper pro-
teins have evolved with constrained sites to match a
simple electron transfer function, then a similar exami-
nation to the one given above of copper sites that
serve different functions in other proteins should
reveal quite different constraints. Reference to reviews
of biological copper chemistry [11-16, 51] confirms
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of inorganic complexes, and that some of the vari-
ations in the reduction potentials of blue proteins can
be explained by structural perturbations of the coordi-
nation sphere and its surroundings based on a com-
mon trigonal NNS donor core. Of special interest is
recent work that implicates certain hydrogen bonds as
the structural elements that constrain copper coordina-
tion in plastocyanin [52]. Another recent paper also
discusses protein control of blue copper properties
[53].

In summary, our analysis of the experimental
evidence indicates that blue copper sites are con-
strained to functional advantage. Indeed, we have
shown that the reduction potentials of copper centers
are modulated to fit the overall AG° of the catalyzed
enzymic reaction; and that the reorganization energy
for electron transfer to and from a blue copper pro-
tein is very low. We have noted further that copper
proteins that have evolved for different functions have
different sites.
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