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From a purely theoretical analogy between energy and momentum transfer in fully
de®eloped turbulent con®ection, an expression without explicit empiricism, and which

( )appears to be applicable for all channels, all modes of heating on the surface s , all
®alues of Re in the turbulent regime, and all moderate and large ®alues of Pr, was
deduced for Nu. An analogous complementary expression for small ®alues of Pr has the
same generality, but incorporates one explicit empirical exponent. The numerical imple-
mentation of these two expressions for Nu for specific ®alues of Re and Pr introduces
some empiricism, but the resulting uncertainty in Nu, including that associated with the
aforementioned exponent, is truly negligible. Because of their accuracy and generality,
these two expressions, together with se®eral supplementary relationships, appear to be
superior to all existing ones for design calculations. Because of their simple and funda-
mental structure, they appear to be equally superior for educational purposes.

Introduction
Ž .Churchill et al. 2000 consolidated the fragments of the

Ž .venerable analogy of Reichardt 1951 for fully developed
turbulent forced convection in a round tube following a step
function in wall temperature into a single expression, and
recognized that the latter could be interpreted as an interpo-
lation between the asymptotic solution for Pr ™` and the
particular integral solution for Pr s Pr . They further recog-t
nized that this analogy, when explicitly reexpressed in terms
of these limiting theoretical solutions, was free of any explicit
empiricism, and that the one specific and erroneous empiri-
cism introduced by Reichardt washed out. Because of the ab-
sence of any allusion to geometry or to the mode of heating
at the wall in the final generic form of the Reichardt analogy,
they conjectured that it might have generality for predictions
in both of these respects.

Ž .Graphical comparisons by Churchill et al. 2000 of this
generic expression with the essentially exact numerical solu-

Ž .tions of Heng et al. 1998 for a uniformly heated round tube,
Ž .and with those of Danov et al. 2000 for uniformly and

equally heated parallel plates and for parallel plates at differ-
ent uniform temperatures, confirmed the accuracy and gen-
erality of its predictions, as did a comparison with the subse-

Ž .quent more exact numerical solutions of Yu et al. 2001 for
both isothermal and uniformly heated round tubes.

The original analogy of Reichardt and its generic interpre-
tation are valid in principle only for Pr G Pr (0.87. How-t

Ž .ever, Churchill et al. 2000 proposed a complementary ana-
logue for lesser values of Pr that is also free of explicit em-
piricism. This latter expression for Pr F Pr is equally gen-t
eral, but it has a weaker rationale and lesser accuracy.

These two generic expressions are not only useful for cor-
relation and prediction, their simple algebraic form and their
freedom from explicit empiricism provide a radially new in-
sight into the fundamental dependence of turbulent forced
convection on Re and Pr. This generality, simplicity, and in-
sight come at a price; in order to obtain a solution in closed
form for his differential model, Reichardt necessarily made
several simplifications on both mathematical and physical
grounds. As a consequence, the original analogy and its
generic extension might be expected to be subject to some
error both functionally and numerically, despite its freedom
from empiricism. The original objective of the work reported
herein was to define that error, to evaluate its consequences,
and, if appropriate and possible, to reduce it.
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The development of the generic correlative and predictive
Ž .equations of Churchill et al. 2000 depended critically upon

a series of prior and rather distinct developments in turbu-
lent flow, in turbulent convection, and in correlation in gen-
eral. This earlier work is reviewed herein only in such detail
as is essential for an understanding of the ensuing analysis.

Mathematical Structure
As noted in the Introduction, the following skeletal struc-

ture consists of only those expressions essential to under-
standing the derivations and constructions that follow.

New structure for turbulent flow in a round tube
Ž .Churchill 1997b expressed the exact time-averaged equa-

tion for the conservation of momentum in fully developed
turbulent flow of a fluid with invariant physical properties in
a round tube in the following new dimensionless form

q qy duqqX X1y 1y u ® s 1Ž .Ž .q qž /a dy

The novelty arises from the introduction of the dimensionless
X X X XqqŽ .quantity u ® sy ru ® rt , which is physically equivalent

to the fraction of the transport of momentum in the radial
direction due to the turbulent fluctuations. Equation 1 may
be integrated formally, following substitution of Rs1y
yqraq, to obtain

q qa aqq1 X Xq 2 2u s 1y u ® dR s 1y RŽ .Ž .H
22 2R

aq
qq1 X X 2y u ® dR 2Ž .Ž .H

22 R

It follows, by means of integration by parts, that

1r2 q2 a qq1 1 X Xq 2 4su s udR s 1y u ® dRŽ .H Hmž /f 40 0

aq aq
qq1 X X 4s y u ® dR 3Ž .Ž .H4 4 0

The expression of Eq. 1 and thereby Eq. 2 in terms of the
X X qqŽ .quantity u ® was the key to the recognition of the possi-

bility of integration by parts, and thereby the attainment of a
single integral for uq.m

Ž .Churchill and Chan 1994 devised a generalized correlat-
X X X Xq q q qqŽ . w Ž .xŽ .ing equation for u ® s 1y y ra u ® that Heng et

Ž .al. 1998 subsequently updated and reexpressed as

y8r73qyqqX Xu ® s 0.7Ž . ž /10ž
y7r8y8r7qy1 1 6.95 y

q exp y 1q 4Ž .q q q½ 5 ž /0.436 y 0.436 a a /
The third-power dependence on yq in the first term on the

Ž .righthand side of Eq. 4 was derived by Murphree 1932 and

others, while the coefficient of 0.0007 was determined by
Ž .Rutledge and Sleicher 1993 and others by means of direct

numerical simulations. The exponential dependence on
Ž q.y1y in the second term is based on the semi-logarithmic

q q Ž .dependence of u on y as derived by Millikan 1938 by
speculative dimensional analysis. The structure of the third

Ž .term on the righthand side was devised by Churchill 1992 to
satisfy the condition of duqrdyqs0 at the centerline, as well
as to conform to the asymptote uqyuqA R2 for R™0,c

X X qqŽ .which is required to yield a finite value of u ® at the
centerline. The coefficients of 0.436 and 6.95 were based on
the recent precise and extended measurements of Zagarola
Ž .1996 for the velocity distribution in the turbulent core at
large values of the Reynolds number. The exponent of y8r7

X Xwas based on the precise and extended measurements of u ®
Ž .by Wei and Willmarth 1980 for flow between parallel plates.

The applicability of these latter data for a round tube hinges
Ž .on the little-known analogy of MacLeod 1951 for the veloc-

ity distributions in these two geometries. The source and ba-
sis for a power-mean combination of the terms for large and
small values of yq is discussed subsequently. The success of
a precursor of Eq. 4 in representing the experimental data of
Wei and Willmarth was demonstrated graphically by Churchill

Ž .and Chan 1994 . These details concerning Eq. 4 are pre-
sented here because all of the subsequent expressions de-
pend critically on its accuracy, functionality, and generality,
and because each of the cited contributions was essential to
its construction.

Ž .The computed values of Yu et al. 2000 based on Eqs. 3
and 4 may be closely represented by

1r2 22 227 50 1
q q�su s3.2y q q ln a 5Ž .m q qž /ž /f a a 0.436

Ž q.y1The form of Eq. 5, including the unfamiliar terms in a
Ž .y2and aq directly follow from the form of Eq. 4, as do the

coefficients.

New structure for turbulent con©ection
Ž .Churchill 1997b proposed the following analogue of Eq. 1

for fully developed turbulent convection in a round tube with
invariant physical properties and negligible viscous dissipa-
tion

q qy dTqqX X1qg 1y 1y T ® s 6Ž . Ž .Ž .q qž /a dy

where

1 uq  Tqr x2R 21qg s dR 7Ž .H q q2 ž /u  T r xR 0 m m

X X qqŽ .The primary novelty here is the direct use of T ® s
X Xrc T ® rj, which is physically equivalent to the fraction of thep

transport of energy in the y-direction due to the turbulent
fluctuations, but the improvement is also due to inclusion of
the quantity g , which represents the fractional deviation of
the radial heat flux density distribution from the radial shear
stress distribution. This quantity has been neglected unjustifi-
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Ž .ably set equal to zero in many prior formulations and calcu-
lations.

Substituting, because of its more constrained variance,
X X qqŽ .Pr rPr for T ® by virtue of the relationshipt

qq qqX X X Xu ® 1y T ®Ž . Ž .Prt
s 8Ž .qq qqX X X XPr T ® 1y u ®Ž . Ž .

converts Eq. 6 to

yq

1qg 1yŽ . qqž / dTa
s 9Ž .qq qX X dyPr u ®Ž .

1q qqX XPr ž /t 1y u ®Ž .

On the basis of Eq. 8, Pr rPr may be noted to represent thet
ratio of the transport of momentum by the turbulent fluctua-

Ž .tions to that by the molecular motions the viscous shear ,
divided by the equivalent ratio for the transport of energy,
and to be independent of its original heuristic, diffusional
basis. The designation Pr rPr was retained for historical rea-t
sons, despite this misleading implication.

The formal integration of Eq. 9 yields the following inte-
gral expression for the temperature distribution across the
radius of the tube

aq 1qg dR2Ž .1qT s 10Ž .H qqX X22 R Pr u ®Ž .
1q qqX XPr ž /t 1y u ®Ž .

Equations 6, 7, 9, and 10 are exact within the constraints noted
with respect to Eq. 6, and Eq. 8 is simply a definition of the
quantity Pr rPr in terms of well-defined physical quantities.t

At this point, it is expeditious to proceed separately and
sequentially for two particular thermal boundary conditions.

Uniform Heating. For the imposition of a uniform heat flux
density from the tube wall to the fluid beginning at some
particular length x ,  Tqr x ™  Tqr x as x increases.0 m
Hence, for fully developed convection, Eq. 7 may be reduced
to

1 uq
2R 21qg s dR 11Ž .H q2 ž /uR 0 m

By virtue of Eqs. 2 and 3, and integration by parts, Eq. 11
may be reexpressed exactly in terms of a combination of sev-

X X qqŽ . Ž Ž .eral single integrals of u ® see Churchill 1997b or Heng
Ž ..et al. 1998 . Similarly, by virtue of Eq. 11 and integration by

parts, the integration of Tq, weighted by uqruq, may be ex-m
pressed as

2q q 42 a a 1qg dRŽ .1qsT s 12Ž .H qqm X XNu 4 0 Pr u ®Ž .
1q qqX XPr ž /t 1y u ®Ž .

Equation 12 is also exact within the constraints imposed on
Eq. 6.

The dependence of Pr on Pr, yq, and aq, or possibly ont
X X qqŽ .Pr and u ® only, is not yet known with certainty. How-

ever, this uncertainty may be avoided without question for
one particular condition, and speculatively for two others. The
corresponding three expressions for Nu were formulated as
follows with the expectation that they might prove useful for
interpretation and correlation.

For Pr s0, Eq. 12 unambiguously reduces to

8 8
� 4Nu [ Nu Pr s0 s s 13Ž .0 2

2 41qg4 Ž .mR1qg dRŽ .H

Insofar as Pr s Pr for all yq and all aq for some particu-t
lar value of Pr, Eq. 12 may be reduced to

8
� 4Nu [ Nu Pr s Pr s1 t qq1 2 X X 41qg 1y u ® dRŽ . Ž .H

0

2 aq Re fr2
s s 14Ž .2 2q

4 41qg u 1qgŽ . Ž .wmR wmRm

The right-most forms of Eq. 14 follow from Eq. 3. The sub-
4 Ž .2script wmR designates the integrated mean value of 1qg ,

X X qq 4Ž .weighted by 1y u ® , over R .
Insofar as Pr approaches a fixed value as yq™0 for larget

X X qqŽ .values of Pr, Eq. 10 may be integrated exactly, using u ®
Ž q .3s0.7 y r10 , to obtain

1r33r23 0.7Ž .
� 4Nu [ Nu Pr ™` s` 20p

1r34r3 1r2qPr Pr T ft c
= 1y Re 15aŽ .qž / ž /ž / ž /Pr Pr T 2t m

1r3 1r2qPr T fc
´0.07343 Re 15bŽ .q ž /ž / ž /Pr T 2t m

1r3 1r2Pr f
´0.07343 Re 15cŽ .ž /ž /Pr 2t

Equation 15a is an exact upper bounding asymptote, Eq. 15b
is a lower bounding asymptote with a more limited range,
and Eq. 15c is the limiting asymptote. The expanded form
Ž . ŽEq. 15a was apparently first derived by Churchill 1992,

. Ž .1997a , but the final form Eq. 15c was obtained earlier by
Ž .Petukhov 1970 and others.

Uniform Wall Temperature. For a step in wall temperature
Ž q . Ž q . q qat some distance x ,  T r x r  T r x ™T rT as x in-0 m m

creases beyond x , and Eq. 7 reduces to0

1 uq Tq
2R 21qg s dR 16Ž .H q q2 ž /u TR 0 m m

With this expression for g , which depends on Tq as well as
on uq, the double integral for Tq cannot be reduced to am
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single one by integration by parts, and Eqs. 10 and 16 must
be solved iteratively. Numerically, a better method is to solve
the differential counterparts of Eqs. 10 and 16, as well as Eq.
1, stepwise and simultaneously for trial values of Tq.m

An alternative formulation for Nu, which avoids a double
integral, may be developed in terms of Tq rather than Tq asc m
follows. From Eq. 10 for Rs1

2 aq Tq aq 1qg dR2Ž .1cqT s s 17Ž .H qqc q X Xž /Nu T 2 0m Pr u ®Ž .
1q qqX XPr ž /t 1y u ®Ž .

The reduced formulation for Pr s0 now becomes

4 TqrTq 4 TqrTqŽ . Ž .c m c m0 0
Nu s s 18Ž .0

21qgŽ .2 m R1qg dRŽ .H

and that for Pr s Pr becomest

4 TqrTqŽ .c m 1
Nu s1 qq1 X X 21qg 1y u ® dRŽ . Ž .H

0

uq Tq Re fr2m c
s 19Ž .q qž / 2u T 1qgŽ .wmRc m 1

Here the subscript wmR2 designates the integrated mean
X X qq 2Ž .value of 1qg , weighted by 1y u ® , over R . Equation 15

remains applicable for an isothermal tube wall. Equations
17]19, which are applicable for uniform heating, as well as
for uniform wall temperature, are useful for interpretation
and correlation, but not for numerical evaluations for the lat-
ter condition since Tq must then still be evaluated sepa-m
rately.

Other geometries and modes of heating
Equations 1 and 6 are directly applicable for fully devel-

oped flow and convection, respectively, in all geometries if
Ž q q.1y y ra is simply replaced by the more general expres-

sion trt . For parallel-plate channels, Eqs. 1, 2, 6, 10, 17, andw
18 are directly applicable if aq is simply replaced by bq, and

Ž q q.R is correspondingly interpreted as equal to 1y y rb . In-
sofar as the analogy of MacLeod is valid, Eq. 4 is applicable
as well. The expressions for uq, g , Tq and, in general, Num m
differ from geometry to geometry, but Eqs. 8 and 15 are uni-
versally applicable. The differing expressions are readily de-
rived simply by accounting for geometry, and, therefore, will
not be presented here. The details for parallel plates and two

Ž .modes of heating may be found in Danov et al. 2000 .

Uniqueness
Most of the above expressions for flow and convection dif-

fer from the conventional ones because of their formulation
X X qqŽ .in terms of u ® . In principle, all of them could have been

derived in terms of the eddy viscosity ratio m rm, which fort
round tubes and parallel plates is exactly equivalent to

X X X Xqq qqŽ . w Ž . xu ® r 1y u ® . However, because of the greater com-

plexity of the expressions in terms of m rm, some of the re-t
ductions presented herein apparently were never recognized.

Generic Correlating Equations
Ž .Churchill and Usagi 1972 proposed the expression

p pp� 4 � 4 � 4y x s y x q y x 20Ž .Ž . Ž . Ž .0 `

as a generic correlating equation for interpolation between
Žtwo asymptotes or limiting values. Equation 4 is an applica-

.tion of Eq. 20 with psy8r7. For three regimes, Eq. 20 may
simply be applied twice in series, for example, as

prqp q q pw xy s y q y q y 21Ž .0 i `

In Eq. 21 and all subsequent expressions of this type, the
dependence on x is, in the interests of simplicity, merely im-
plied. In some instances, depending on the functionality of
y , y , and y , Eq. 21 may predict forbidden values of y, that0 i `

is, either below the lower bounding value or asymptote or
above the upper one. The magnitude of the resulting error
may be in some instances so small as to be tolerable. In any
event, such an anomaly may be avoided with staggered for-
mulations such as

1rqqp p p q p py y y s y q y y y 22Ž .Ž .0 i ` 0

although other anomalies may occur, again depending on the
particular, relative functionalities of y , y , and y . The elim-0 i `

ination of the possible flaw in Eq. 21 by Eq. 22 comes at the
price of greater complexity, even though the same asymptotes
and the same number of arbitrary exponents are involved. In
the interests of brevity the alternative expressions that result
from the reverse order of combination of y , y , and y in0 i `

Eqs. 21 and 22 will not be presented here, even though they
have equal potentiality for correlation and should always be
tested in a specific application to determine the most suc-
cessful representation.

This diversion on generic correlation equations was in-
serted here, since Eq. 21 is applied and Eq. 22 proves to be a
critical element in the developments that follow.

Reichardt Analogy
A simple satisfactory correlating equation in terms of Nu ,0

Nu , and Nu and with the structure of Eq. 21 or Eq. 22 was1 `

Ž .not found directly. Instead, the analogy of Reichardt 1951
was discovered somewhat serendipitously to fulfill this role.
In the interests of consistency and simplicity, the original
derivation of the analogy by Reichardt is rephrased in terms

X X qqŽ .of u ® , rather than m rm. Taking the ratio of Eqs. 1 andt
9, followed by formal integration results in

q 1qg duqŽ .ucqT s 23Ž .Hc Pr qq0 X X1q y1 u ®Ž .ž /Prt

The ingenious, critical step by Reinchardt that permitted the
derivation of a solution in closed form, starting from Eq. 23,
was the exact expansion of the integrand into three additive
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terms as follows

Prt
1y

q g Pru t Prcq qT s q q du 24Ž .H qqc X XPr Prqq0 Pr u ®X X Ž .1q y1 u ®Ž . 1q qqž /Pr X Xt Pr ž /t 1y u ®Ž .

Ž .He next made four approximations: 1 the representation of
Ž .the left-most term of the integrand by g Pr rPr; 2 the repre-t

X X X Xqq qqŽ . w Ž . xsentation of u ® r 1y u ® in the right-most term by
Ž q .5 Ž . q q2.7 y r10 ; 3 the replacement of du by dy in the right-

Ž .most term; and 4 the neglect of the variation of Pr witht
yq. The quantitative evaluation of each of these four approxi-
mations was one of the original objectives of this investiga-
tion.

After all of these preparations, Reichardt did not actually
derive a final single algebraic expression for Nu, but instead
used fragments thereof to compute numerical values of Nu,
most of which he only presented graphically. Had he derived

Ž q .3such an expression and used 0.7 y r10 , rather than
Ž q .52.7 y r10 in the righthand term, he presumably would have

obtained

1 Pr Tq uq 1qg qŽ .mut m c
s q qž / ž /Nu Pr T u Re fr2c m

1r3qPr T Pr 13.62t m t
q 1y 25Ž .q 1r2ž / ž /ž /Pr T Pr Re fr2Ž .c

Because of the prior derivation of Eq. 15b for Nu and Eq.`

19 for Nu for a uniform wall temperature, Churchill et al.1
Ž .2000 recognized that Eq. 25 could be interpreted as

1 Pr 1 Pr 1t t
s q 1y 26Ž .ž / ž /Nu Pr Nu Pr Nu1 `

if Tq and Tq were evaluated at their limiting values. Testc m
calculations using Eq. 25 with local values of TqrTq did notc m
significantly differ from those using Eq. 26, which, on the
basis of Eqs. 15b and 19, incorporates the local values.
Reichardt referred only offhandedly in his derivation to the
mode of heating, but utilized Eq. 16 rather than Eq. 11 for g ,
which is the key difference. On the basis of a footnote re-

Ž .garding the contemporaneous solution of Lyon 1951 , it may
be inferred that Reichardt did not fully recognize the reason
for the discrepancy between the solution of Lyon for uniform
heating and his own solution for uniform wall temperature.
This distinction was first stressed by Seban and Shimazaki
Ž .1951 later that same year. On the other hand, the absence
of any intimation of the geometry or the mode of heating in

Ž .Eq. 26 led Churchill et al. 2000 to speculate that it might be
broadly applicable in both of these senses.

Equation 26 may be interpreted to have the form of Eq. 20
Ž . Ž .with psy1 and with Nu PrrPr and Nu r 1y Pr rPr as1 t ` t

asymptotes. The first of these terms might have been con-
ceived in advance as an asymptote, but hardly the latter. On

the other hand, the rearrangement of Eq. 26 as

Nuy Nu 11
s 27Ž .

Nu PrNu y Nu ` t` 1 1q ž /Nu Pr y Pr1 t

may be recognized to have the form of Eq. 22 with psy qs
Ž .Ž1, y s Nu , y s Nu , and y s Nu rNu Nu y0 1 ` ` i 1 ` `

.wŽ . x.Nu PrrPr y1 . In terms of the staggered variable PrrPr1 t t
y1, Nu goes through a classical sigmoidal transition from
Nu , to Nu with an intermediate asymptote given by Nu s1 ` i
Ž .Ž .ŽwŽ . x.Nu rNu Nu y Nu PrrPr y1 . The effect of the stag-1 ` ` 1 t

Ž .gered variable PrrPr y1 is to convert Nu from a particulart 1
value to a lower bounding asymptote. This functionality would
certainly not have been deciphered from experimental data

Ž .or even from the computed values of Yu et al. 2001 , and
probably not even from Eq. 26, in the absence of Eq. 22.

Analogue of Reichardt Analogy for Pr F Prt

It is apparent from Eqs. 25 and 26 that their applicability is
Ž .limited to Pr G Pr . Churchill et al. 2000 conjectured thatt

the complete inverse of Eq. 26, namely

1 Pr 1 Pr 1
s q 1y 28Ž .ž / ž /Nu Pr Nu Pr Nut 1 t 0

might provide a good prediction for Pr F Pr . However, Eq.t
28 proved to be quite numerically inadequate, and further-

Ž .more resulted in a discrete step in dNurd PrrPr at Pr s Pr .t t
Accordingly, they investigated the representation provided by
various modified expressions, including, most successfully

Nuy Nu 10
s 29Ž .

Nu Pr y PrNu y Nu 1 t1 0 1q a ž /ž /Nu Pr0

where a is an arbitrary coefficient, for which they derived an
expression by equating the derivatives of Eqs. 27 and 29 at
Pr s Pr and, thereby, obtainedt

Nuy Nu 10
s 30Ž .1Nu y Nu Nu Nu y Nu Pr y Pr1 0 1 ` 1 t

1q 1 ž /ž /Nu y Nu PrNu 1 0`

1 � 4where Nu s Nu Pr s Pr . Remarkably, Eq. 30 is free of any` ` t
explicit empiricism and might be expected to have the same
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generality as Eq. 27, despite its lesser theoretical credentials.
The functional behavior predicted by Eq. 30 is wholly analo-
gous to that predicted by Eq. 27, namely a sigmoidal transi-
tion from Nu to Nu , with the effective internal asymptote0 1

21Nu Nu y Nu Pr y PrŽ .` 1 0 t
Nu s 31Ž .i 1 ž /Nu PrNu y NuŽ .1 ` 1

Again, by virtue of a staggered independent variable, this time
Ž .PrrPr y1, Nu becomes a limiting rather than a particular1
value.

The combination of Eqs. 27 and 30 was expected to pro-
vide a good functional and possibly numerical prediction for
Nu for all values of PrrPr , all values of aq or the equivalent,t
greater than 150, all geometries, and all modes of heating at

Ž .the surface s , without any explicit empiricism. Equation 26,
and thereby Eq. 27, is, of course, not exact owing to the ap-
proximations made by Reichardt in order to be able to inte-
grate analytically, and Eq. 30 would be expected to be subject
to even greater error due to its purely conjectural derivation.
The actual resulting functional and numerical errors are ex-
amined in the next section.

Intrinsic Errors in the Generalized Reichardt
Analogy

A comparison of the predictions of Nu by the serial combi-
nation of Eqs. 27 and 30 with the essentially exact computed

Ž .values of Yu et al. 2001 for a round tube with a uniform
wall temperature is reproduced in Figure 1. The agreement
appears to be very good both functionally and numerically for
all values of PrrPr , and for all three of the chosen represen-t
tative values of aq. Equivalent representations were demon-
strated by Yu et al. for a uniformly heated round tube and by

Ž .Churchill et al. 2000 for a parallel-plate channel with both
equal uniform heating and unequal uniform wall tempera-
tures. These comparisons are independent of the expression
used for Pr in the numerical calculations for intermediatet
values of Pr insofar as the condition leading to Eqs. 14 and
19, namely, independence of Pr from yq for Pr s Pr , andt t

Figure 1. Predictions of Nu by Eqs. 27 and 30 vs. calcu-
( )lated values of Yu et al. 2001 for round tubes

with a uniform wall temperature.

Figure 2. Percent deviations of predictions of Eqs. 27
and 30 from calculated values of Yu et al.
( )2001 for round tubes with a uniform wall
temperature.

Žthe condition leading to all versions of Eq. 15 namely, the
approach to a finite value of Pr as yq™0 for large values oft

.Pr are fulfilled.
A more critical test is provided in Figure 2 in which the

deviations of the predictions of Eqs. 27 and 30 from the cal-
culated values of Yu et al. are plotted as percentages in
semi-logarithmic coordinates. Both the predicted and com-
puted values in Figure 2 are arbitrarily based on the follow-
ing empirical expression for Pr

0.015
Pr s0.85q 32Ž .t Pr

Any alternative expression for Pr that is also a function onlyt
of Pr would simply shift the curves and the computed values
in Figure 2 horizontally and equally.

In contrast to the impression of good accuracy provided by
Figure 1, the percentage of deviations in Figure 2 may be
seen to be significant in magnitude. The three curves on the

Ž . qlefthand side for Pr - Pr s0.8673 represent Eq. 30 for at
s500, 5,000, and 50,000. The pattern of the deviations ap-
pears to be quite irregular with respect to both Pr and aq.

ŽOn the other hand, the deviations on the righthand side for
.Pr ) Pr s0.8673 are more constrained and essentially aret

independent of aq. For that reason, a curve representing Eq.
27 was plotted only for aqs5,000. The pattern of the devia-
tions from Eqs. 27 and 30 was found to be very nearly the
same for a uniformly heated round rube and for parallel plates
with equal uniform heating and unequal uniform tempera-
tures, implying a fundamental shortcoming of Eqs. 27 and 30.

A numerical assessment of the approximations made by
Reichardt in simplifying the integration of Eq. 24 revealed
that those made with respect to the right-most term were pri-
marily responsible for the error indicated in Figure 2 for Pr
) Pr s0.8673. A much more detailed analytical solutiont
was derived with no approximations other than utilizing

X Xq 3 qqŽ . Ž .0.7 y r10 for u ® . However, the result was very disap-
pointing in that the negative deviations were replaced by pos-
itive ones of almost the same magnitude, apparently due to

X X qq qŽ .the inapplicability of this approximation for u ® for y
)5. At this point, a completely different and much more
successful approach was discovered.
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Alternative Analogy
Ž .Churchill 1997a devised, on the basis of a generalized

temperature distribution and m rm, an analogy that may nowt
X X qqŽ .be derived more straighforwardly and in terms of u ® as

Ž qfollows. For ‘‘the turbulent core near the wall’’ 30- y -
q.0.1a , the general semi-logarithmic expression derived by

Ž .Millikan 1938 for the time-mean velocity distribution is
known from the recent experimental measurements of Za-

Ž .garola 1996 to provide a good representation. It follows that
X Xq q qq qŽ .in this region 1y y ra (1 and u ® (1y1r0.436 y . For

purposes of simplicity only, g will be postulated to be zero at
this stage and then accounted for at the end. Then Eq. 9
reduces to

dTq 1
s 33Ž .q Prdy q1q 0.436 y y1Ž .

Prt

Utilizing indefinite integration, since Eq. 33 is not applicable
at yqs0, and postulating the independence of Pr from yq

t
results in

1 Pr 1 Pr Prt t tq qT s ln y y 1y qC½ 5½ 5ž / ž /0.436 Pr 0.436 Pr Pr

34Ž .

Then

1 Pr 1 Pr Prt t tq qT s ln a y 1y qCc ½ 5½ 5ž / ž /0.436 Pr 0.436 Pr Pr

35Ž .

For all applicable values of aq, that is, those greater than
150, and all values of Pr ) Pr , Eq. 35 may be reduced witht
negligible error to

1 Pr Prt tq q� 4T s ln a qC 36Ž .c ½ 5ž /0.436 Pr Pr

The measurements of the time-mean velocity at the center-
line by Zagarola may be very closely represented by

1
q q� 4u s7.64q ln a 37Ž .c 0.436

Hence, Eqs. 36 and 37 may be combined to obtain

Pr Prt tq qT s u y7.64 qC 38Ž .Ž .c c ½ 5Pr Pr

It follows that

2 aq 2 aq Tq 2 aq TqrTqŽ .c c m
Nus s sq q q Pr Prž /T T T t tm c m qu y7.64 qCŽ .c ½ 5Pr Pr

39Ž .

Ž .Equation 39 reduces to Nu for g s0 and Nu only if1 `

2r3Pr Pr Prt t t
C s 13.62 y5.98 40Ž .½ 5 ž /Pr Pr Pr

� 4Substitution for C Pr rPr in Eq. 39 from Eq. 40 results int
the equivalent of

1
Nus 41Ž .2r3Pr 1 Pr 1t t

q 1yž / ž /Pr Nu Pr Nu1 `

Žwith Nu from Eq. 15c and Nu from Eq. 19 with g s0, and` 1
q q .T rT allowed to vary . It may be inferred that Eq. 41 re-c m

mains applicable for the mean values of g indicated by Eqs.
14 and 19 for uniform heating and isothermal heating, re-
spectively. Equation 41, just as Eq. 26, is free of explicit em-
piricism.

Equation 41 predicts the computed values of Yu et al.
Ž . q2001 for uniform wall temperature, all a G150, and Pr G
Pr with a positive error of about 0.25% on the mean, andt

Ž .2r3with a maximum error of 0.7%. Thus, the term 1y Pr rPrt
Ž .in Eq. 41, as compared to 1y Pr rPr in Eq. 26, almost ex-t

actly compensates for the error due to the approximations of
Ž .2r3Reichardt. The term in 1y Pr rPr was apparently firstt

Ž .utilized by Ribaud 1941 in a correlating equation, then sub-
Ž .sequently by Petukhov and Popov 1963 , both on purely em-

pirical grounds.
Many expressions for Pr - Pr , complementary to Eq. 41,t

were examined, the most successful being

Nu y Nu 11
s 42Ž .1r8 1Nu y Nu Pr rPr Nu y Nu NuŽ . Ž .1 0 t 1 0 `

1q Pr 2t 1y1 Nu y Nu Nu` 1 1ž / ž /Pr 3

Equation 42 is loosely analogous to Eq. 41 and has a match-
ing value and derivative with respect to PrrPr at Pr s Pr ,t t
but the exponent of 1r8 is purely empirical. Equation 42 rep-
resents the computed values of Nu for Pr F Pr and aqG150t
for uniform wall temperature, uniform heating, and parallel
plate channels with an error of less than 1% on the mean
and a maximum of 3%. The predictions of Eqs. 41 and 42 are
subsequently compared graphically with the numerically com-
puted values for uniform wall temperature, as well as with
prior correlative and predictive expressions.

Numerical Implementation
Although Eq. 41 is free of explicit empiricism and Eq. 42

involves only a minimal degree numerically, their implemen-
tation in practice, that is, the prediction of numerical values
of Nu for specific values of Re and Pr, involves a consider-
able degree of empiricism, but very little associated uncer-
tainty. This aspect is described here only for a round tube
with isothermal heating since the development of equivalent
supplemental expressions for other geometries and modes of
heating is straightforward.
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Ž . qYu et al. 2001 carried out calculations for Nu and T rT ,c m
and tabulated these values for a series of values of aq and
Pr. For tabulated values of aq, but intermediate values of Pr,
Eq. 32 may be used for Pr and then Eqs. 41 and 42 for Nu,t

Ž .1r3Ž q.since Nu s0.07343 PrrPr 2 a and values of Nu and` t 0
Nu are included in the tabulation. For intermediate values1
of aq, it might appear necessary to have separate correlating

q q q q Ž . Ž .2 2equations for u ru , T rT , 1qg and 1qg .c m c m mR wmR
However, Yu et al. simplified the representation by develop-
ing the following purely empirical expressions for the direct
prediction of Nu and Nu0 1

4 TqrTq 8Ž .c m
Nu s ( 43Ž .0 1.5421qgŽ .mR 1q 1r3quŽ .m

and

uqruq TqrTq Re fr2 2 aqruqŽ .Ž . Ž .m c c m m
Nu s ( 44Ž .1 14521qgŽ .wmR 1q 5r2quŽ .m

Equations 43 and 44, with uq from Eq. 5, reproduce them
computed values of Nu and Nu within 0.3%. These partic-0 1
ular errors are further reduced in the predicted values of Nu
itself for intermediate values of PrrPr . For specified valuest
of Re, the corresponding value of aq may be determined by
solving Eq. 5, with uq replaced by Rer2 aq, iteratively.m

The values of Nu computed by Yu et al. and those pre-
dicted by the above procedures for specified values of Re
and Pr share a common uncertainty, namely that associated

Ž .with the prediction of Pr . Abbrecht and Churchill 1960 in-t
ferred, from their measurements of the velocity and two-

Ž .dimensional 2-D temperature field in fully developed turbu-
lent flow in a round tube following a step in wall tempera-
ture, that Pr was a function only of Pr and the eddy viscos-t
ity, thereby independent of the mode of heating. From the
close agreement of their values of Pr with those determinedt

Ž .by Page et al. 1952 for heat transfer between parallel plates
for aqs bq, they inferred the independence of Pr from ge-t
ometry as well. This sweeping generalization does not appear
to have been either theoretically proven or disproven, but it

Ž .is implied by the expressions derived by Yahkot et al. 1987
Ž .and Elperin et al. 1996 by renormalization group theory, as

Žwell as by most empirical correlating equations. For exam-
Ž . .ple, see Kays 1994 .

Test calculations by Yu et al., using two different correlat-
ing equations for Pr , resulted in differences in Nu of lesst
than 3% for all values of aq and yq, thus supporting the

Ž .qualitative deduction of Heng et al. 1998 that computed
values of Nu are relatively insensitive to the expression used
for Pr . Furthermore, these small differences appear to be as-t

X X qqŽ .sociated with the dependence on Pr rather than on u ® .
On the other hand, the Lagrangian direct numerical simu-

Ž .lations of Papavassiliou and Hanratty 1997 imply that Prt
becomes unbounded as yq™0 for very large values of Pr,
which contradicts the basic postulate made in deriving Eq.
15. Even so, this does not necessarily invalidate Eqs. 41 and
42 insofar as the corresponding expression, such as that given

Ž .by Shaw and Hanratty 1997 , is used for Nu .`

The resolution of the uncertainty in Pr is the principalt
remaining task in turbulent forced convection. Equations 15,
43, and 44 may eventually need to be fine-tuned in this re-
spect, but not necessarily Eqs. 41 and 42.

Assessment of the New Predictive Equations
The above emphasis on the errors and uncertainties associ-

ated with Eqs. 41 and 42, as well as with Eqs. 4, 5, 15, 43, and
44, should not be misconstrued. This general structure, to-
gether with its theoretically based components, is presumed
to provide more accurate predictions of Nu for all Pr, all
values of Re in the turbulent regime, all geometries, and all
modes of heating than any previous expression or expres-
sions. Furthermore, it provides a continuous functional rela-
tionship involving two points of inflection, of which the exis-
tence of one was apparently never recognized before.

Reassessment of the Functionality of Prior
Theoretical and Empirical Equations

The presumed functional and numerical accuracy of the
new correlative equations suggest a secondary role in addi-
tion to that of prediction, namely, their use as a standard for
interpretation and evaluation of prior theoretical and empiri-
cal expressions for turbulent convection. The functionalities
of the latter are considered in this section.

Prior analogies
Ž .Reynolds 1874 postulated that momentum and energy

were transported between the bulk of the fluid stream and
the confining surface wholly by the turbulent fluctuations in
velocity and at equal mass rates. By elimination of that mass
rate of turbulent transport, he derived the equivalent of the
following

Nus PrRe fr2 45Ž . Ž .

This expression shares with Eqs. 26 and 41 the twin distinc-
tions of freedom from explicit empiricism and of complete
generality with respect to geometry and the mode of heating
at the surface.

Ž .Prandtl 1910 greatly improved on the Reynolds analogy
by postulating linear transport of momentum and energy
across a thin boundary layer of thickness d , in series with the
equal mass rate of transport of these quantities outside the
boundary layer. On that basis, he derived the equivalent of

1
Nus 46Ž .q1 1 d

q 1y 1r2ž /PrRe fr2 PrŽ . Re fr2Ž .

Equation 46 may be recognized as analogous to the reduced
case of Eq. 26 for Pr s1, Nu from Eq. 14 with g s0, andt 1
Nu from Eq. 15 with dq in place of 13.62 Pry1r3. It may be`

inferred from the Prandtl analogy that the Reynolds analogy
is applicable only for Pr s1, and, conversely, that the struc-
ture of the Reichardt analogy is simply a consequence of
transport in series through the turbulent core and the viscous
boundary layer, an inference that is not apparent from the
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derivation of Eq. 25. The failure of the Reynolds analogy for
large values of Pr is, as indicated by comparison of Eqs. 45
and 15b, due to the failure to account for the presence of a
viscous boundary layer, while failure of the Prandtl analogy
in this same limit is due to the neglect of turbulent transport
in the viscous boundary layer. The absence of g in Eqs. 45
and 46 indicates that the deviation of the heat flux density
distribution from the shear stress distribution within the fluid
stream is neglected in both analogies. The common failure of
the Reynolds, Prandtl, and Reichardt analogies for small val-
ues of Pr, as indicated by their comparison with Eq. 30 or 42,
is due to their complete neglect of the contribution of ther-
mal conduction within the turbulent core. The lasting merit
of the Reynolds analogy is its prediction of the approximately

� 4correct dependence of Nu on both Re and Pr for Pr s OO 1 .
The lasting merit of the Prandtl analogy is its prediction of a
varying, interlinked dependence of Nu on Re and Pr. Unfor-
tunately, even after nearly a century, this interlinking has been
overlooked or ignored in the construction of many correlat-
ing equations.

Most of the many subsequently derived analogies for tur-
bulent momentum and energy transfer may be categorized as
empirical modifications of the Prandtl analogy. They gener-
ally incorporate a factor of Pr1r3 to account for turbulent
transport in the viscous boundary layer, but most imply that
Pr s1 and many that g s0. Since they are all inferior int

Ž .detail to the corrected Reichardt analogy Eq. 25 and the
Ž .Churchill analogy Eq. 41 , and since they have all recently

Ž .been reviewed by Churchill 1997c , they will not be exam-
ined here, except for two whose consideration is more conve-
niently deferred to a critique of empirical correlating equa-
tions.

Prior integral models
Many so-called analogies are actually approximate analyti-

cal or numerical solutions of the equivalent of Eq. 12 in terms
of the eddy viscosity, utilizing separate and often incongruous
expressions for the eddy viscosity and the time-averaged ve-
locity. The friction factor then enters the expression for Nu
only as a replacement for uq. Particularly noteworthy exam-m

Ž . Ž .ples are those of Martinelli 1947 and Lyon 1951 , both of
whom took thermal conduction in the turbulent core into ac-
count in order to provide better predictions for low-Prandtl-
number fluids such as liquid metals. Both retained Pr in theirt
formulations, but carried out numerical evaluations only for
Pr s1, thereby introducing significant error in the very ranget
of Pr in which they were most interested. Lyon took into
account the correct variation of the radial heat flux density,
but Martinelli postulated g s0. Both neglected turbulent
transport in the viscous boundary layer, thereby invalidating
their results for very large values of Pr. Both noted the dis-
tinction between uniform and isothermal heating and postu-
lated the former. Their major lasting contribution is the pre-
diction of a lower bounding value for Nu as Pr ™0.

Ž . Ž .Sleicher and Tribus 1957 , Kays and Leung 1963 , and
Ž .Notter and Sleicher 1972 took all of these effects into ac-

count and thereby produced numerical solutions that are ex-
act in principle for all values of Re and Pr. Their results
have, however, now been superseded by those of Heng et al.
Ž . Ž . Ž .1998 , Danov et al. 2000 , and Yu et al. 2001 , owing to the

X X qqŽ .greater accuracy of Eq. 4 for u ® as compared to the
earlier separate and incongruous expressions that were used
for uq and m . All six of these sets of numerical solutions aret
subject to the uncertainty still associated with the expression
used for Pr .t

Respresentati©e prior correlati©e equations
Ž .Nusselt 1910 misapplied dimensional analysis for forced

convection and obtained

Nus ARenPr m 47Ž .

rather than, correctly

� 4Nusw Re, Pr 48Ž .

This mistake is deeply imbedded in the culture of chemical
engineering. Equation 47 is apparently the original source of
inspiration for the many correlating equations in the form of
products of powers of the independent variables that pervade
the literature, not only of heat and mass transfer, but also for
many varieties of physical and chemical behavior. The
Prandtl, Reichardt, and Churchill analogies totally refute this
concept for the very behavior with which Nusselt was con-
cerned. In reality, if more than one narrowly defined regime
exists, power-dependences and their products occur only
asymptotically. The numerical values of the arbitrary expo-
nents found in the literature are usually some kind of mean

Ž .for some particular range of the independent variable s . The
resulting functional, as well as numerical, misrepresentations
are often disguised by the use of logarithmic coordinates for
display. The serious consequence is the unwitting acceptance
by designers of a relatively poor correlating equation whose
mispredictions are necessarily compensated for by the use of

Ža large safety factor. It should be noted that the exponent of
2r3 in Eq. 41 has a theoretical basis, but that of 1r8 in Eq. 42
is purely empirical and presumably subject to the above criti-

.cisms.
Ž .Dittus and Boelter 1930 correlated experimental data for

forced convection in round tubes for both gases and ordinary
liquids in terms of Eq. 47 with ns0.8, As0.0243, and ms
0.4 for heating of the fluid, and with ns0.8, As0.0265, and
ms0.3 for cooling of the fluid. These differences in m and
D are now known to compensate for the effect of the varia-
tion in the viscosity of liquids with temperature. Colburn
Ž .1933 noted the similarity of the Dittus-Boelter equations to
the following power-law-type empirical correlating equation
for the friction factor

f s0.046 Rey0.2 49Ž .

Accordingly, he ingeniously postulated a mean value of 0.023
for the coefficient for both Nu and fr2 and a convenient
mean value of 1r3 for the exponent of Pr, and then took the
ratio of these two expressions to obtain

f
1r3Nus Re Pr 50Ž .ž /2

Because of the absence of odd-valued exponents and a lead-
ing coefficient, and because of its degeneration to the

May 2002 Vol. 48, No. 5AIChE Journal 935



Reynolds analogy for Pr s1, the Colburn analogy is some-
times misinferred to have some theoretical basis. However,
the absence of an odd-valued exponent for Re and a leading
coefficient were simply contrived, and the degeneration of
Eq. 50 to Eq. 45 is simply fortuitous. Actually, as may be
inferred from Eq. 5, f is not a fixed power of Re for any
extended range of Re. Also, as may be inferred from Eqs. 41
and 42, Nu is not proportional to a fixed power of Re or Pr
for any extended range of either variable, even for Pr ) Pr .t
In summary, Eq. 50, which is a combination of two arbitrary
empirical correlating equations, is in error functionally in ev-
ery respect. As will be shown, it also provides poorer numeri-
cal predictions than might have been expected on the basis of
its empirical roots.

Many improved correlating equations have been proposed
since the time of Dittus and Boelter and of Colburn. Most of
them have the general structure of the Prandtl, Reichardt, or
Churchill analogies, but incorporate empirical coefficients.
Since most of these expressions are grossly inferior to Eqs. 41
and 42 with the proposed auxiliary expressions for Nu , Nu ,0 1
and Nu , and since they generally do not even purport to`

encompass the regime of small values of Pr, they will not be
examined here except for one based on Eq. 23, one based on
the structure of Eq. 41, and one based on Eq. 21.

Ž .Friend and Metzner 1958 rearranged the equivalent of
Eq. 24 as follows in terms of m and for the very simplifiedt
case of g s0, Pr s1, and Tq sTq

t c m

PrRe fr2 uqŽ . c
yq qq du Nu uu mc s 51Ž .H 1r2mt0 Pr y1 fr2Ž .Ž .1q Pr ž /m

Ž .Using the following correlating equation of Drew et al. 1932
for the friction factor

f
y0.32s0.0007q0.0625Re 52Ž .

2

Ž .and experimental data for Nu and Sh for various values of
Ž .Re and Pr and Sc G0.7, they determined a mean value of

1.2 for uqruq, and 11.8 Pry1r3 as a representation for thec m
integral. Their final result was therefore

1
Nus 53Ž .1.2 1 11.8

q 1y 1r2ž / 1r3PrRe fr2 PrŽ . Re fr2 PrŽ .

Equation 53 is found, as might be expected, to represent rea-
sonably well the experimental data upon which it was based.
Comparison of this expression with Eqs. 25 and 26 indicates

Ž q q.Ž q q.Ž . qthat Pr T rT u ru 1qg has been approximatedt m c c m mu
w Ž .xŽ q q. 1r3 Ž .by 1.2 and 13.62 1y Pr rPr T rT Pr by 11.8 1y1rPr ,t m c

w Ž . xor Nu by PrRe fr2 r1.2 and Nu by1 `

1r2 1r3Pr y Pr Re fr2 PrŽ .tž /Pr y1 11.8

Friend and Metzner noted a point of inflection at Pr (2 in
their logarithmic plots of NurPrRe vs. Pr, but dismissed that

observation with the statement, ‘‘This representation has no
theoretical significance, of course; it is merely a consequence

Žof the simple empirical from chosen to represent the inte-
.gral of Eq. 54 and the approximate treatment of the

second-order effects of TqrTq and uqruq, . . . .’’c m c m
Ž .Petukhov 1970 proposed the correlating equation

1
Nus 54Ž .2r3w xK K Pr y11 2

q 1r2PrRe fr2Ž . PrRe fr2Ž .

with

K s1q3.4 fr2 (1.07 55Ž . Ž .1

and

K s11.7q1.8 Pry1r3 (12.8 56Ž .2

to represent the numerically computed values of Nu by
Ž .Petukhov and Popov 1963 for Pr G0.5 and uniform heating.

In evaluating these coefficients, they utilized the following
expression for the friction factor

1r22
� 4s2.235ln Re y4.64 57Ž .ž /f

Equation 54 may be inferred to be equivalent to Eq. 41 with
Ž .Nu s Pr Re fr2 K and1 t 1

2r31r2 1r3Re fr2 Pr 1y Pr rPrŽ . Ž .t
Nu s` 1

K 1y2 2r3Pr

Ž . Ž q q.Ž q q.that is with 1qg s Pr T rT u ru approximatedwmR t c m m c
by K , and1

2r3Pr 1t
13.62 1y 1y 2r3ž /Pr Pr

by K .2
Ž .Churchill 1977 developed the following correlating equa-

tion for all values of Re and Pr for both a uniformly heated
and an isothermally heated round tube

1r20.079PrRe fr2Ž .
Nus Nu q 58Ž .0 5r64r51q PrŽ .

As contrasted with Eqs. 53 and 54, Eq. 58 is based on the
application of Eq. 21 for an expression for large Pr, an ex-
pression for intermediate Pr, and a limiting value for Pr s0,
with ps1 and qsy5r6. The coefficient of 0.079, the im-
plicit coefficient of unity before Pr 4r5, the combining expo-
nents, and the limiting values of 6.3 and 4.8 for uniform heat-
ing and isothermal heating, respectively, were based on culled
experimental data for both heat and mass transfer, as well as

Ž .on the computed values of Notter and Sleicher 1972 . A
complementary expression differing only slightly from Eq. 5
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was devised for the friction factor. Equation 58 is in error
functionally in that it predicts only one point of inflection

Ž .with Pr, does not predict the proportionality of Nu to Re fr2
for Pr s Pr , and thereby does not predict the interlinking oft
the dependence of Nu on Re and Pr.

Graphical Comparison of the Accuracy of the
Numerical Predictions of the Past and Present

In the preceding section it was demonstrated that Eqs. 41
and 42, together with Eqs. 5, 13]15, 18, and 19, constitute a
significant advance in functionality, scope, and generality over
all prior analyses. In this section, the numerical predictions
of the new expressions, as well as those of the past, are com-
pared with essentially exact numerically computed values.
This comparison is limited to isothermal round tubes, as are
most of the detailed derivations in this article, but limited
test calculations suggest that the results are representative
for uniformly heated round tubes, for parallel plates, and
presumably for other geometries as well. In order to empha-
size the magnitude of the differences, the comparisons are
presented in terms of the percentage deviations from the

Ž .computed values of Yu et al. 2001 . The only significant
source of uncertainty in these latter values is that associated
with the expression used to predict Pr , namely Eq. 32, sincet
the uncertainty in Nu associated with the uncertainty of Eqs.
4 and 5 is truly negligible. Except for the correlating equation

Ž .of Petukhov 1970 , the comparisons are for uniform wall
temperature. In that one case, the comparison is for uniform
heating in accordance with their correlated values. The
analogies of Colburn and of Friend and Metzner were based
on experimental data for which the mode of heating was not
clearly or consistently defined in all cases. In any event, the
differences due to the mode of heating are negligible for their
ranges of values of Pr. The expressions used by individual
authors for the friction factor were utilized with their expres-
sions for Nu. This shifts the Reynolds number somewhat for
a fixed value of aq, but neither that shift nor the effect of
different expressions for f in the predictive expressions for
Nu significantly affects the comparisons that follow.

The percent deviations of the various expressions for Nu
from the computed values of Yu et al. are plotted in Figure 3

q Ž 5.for a s5,000 Res2.27=10 . The deviations due to Eq.
41 are seen to be completely negligible for Pr ) Pr , even int
this exaggerated form, and to be very small, with a maximum
value of C1.5%, for Pr - Pr . The seemingly random devia-t
tions for Pr - Pr suggest the possibility that some of theset
discrepancies may be due to small numerical errors in the
computations rather than to the predictive equations. The ac-
curacy of the predictions of Eq. 41 allows this expression to
be used as a standard for values of Pr intermediate to those
chosen by Yu et al. for their computations, resulting in com-
pletely defined curves for the graphical comparisons for Pr )
Pr . However, for Pr - Pr , the curves were necessarilyt t
sketched through the values of the deviations for only five
discrete values of Pr.

Ž .The Colburn analogy Eq. 50 , which is effectively the Dit-
tus-Boelter equation in this instance, may be observed to
overpredict Nu by 8% at Pr s0.7 and then to underpredict
increasingly to 43% as Pr increases to 10,000. For aqs50,000
Ž .not shown in Figure 3 , the overprediction of Eq. 50 at Pr s

Figure 3. Percent deviations of predictions of various
correlative expressions from calculated val-

( )ues of Yu et al. 2001 for round tubes with
uniform heating or a uniform wall temperature
at aHs5,000.

0.7 increases slightly to 9% and the underprediction at Pr s
10,000 decreases to 26%. At aqs500, the overprediction of
Eq. 50 at Pr s0.7 decreases to 2.4%, but the underpredic-
tion at Pr s10,000 increases to 56%. It may be concluded
from these results that, at least for channels, the Colburn
analogy is now only of historical interest.

Ž .The analogy of Friend and Metzner Eq. 53 may be ob-
served in Figure 3 to underpredict Nu by C20% for Pr s
� 4OO 1 and overpredict by C9% for large values of Pr. In con-

trast to the analogy of Colburn, the deviations do not change
greatly with aq. A detailed analysis suggests that these devia-
tions are primarily a consequence of nonoptimal values for
the two arbitrary coefficients of Eq. 53, but also to some ex-
tent of the inferiority of the dependence on the factor 1y
Ž . Ž .2r31rPr as compared to 1y Pr rPr .t

Equation 54 of Petukhov may be observed to underpredict
Ž .somewhat less than Eq. 53 of Friend and Metzner C10%

� 4for Pr s OO 1 , but to overpredict almost identically to Eq. 53
for large values of Pr. The deviations for Pr ) Pr are primar-t
ily a consequence of less than optimal expressions for K and1
K since Eq. 54 is otherwise identical to Eq. 41. The neglect2
of g is an additional significant source of error for the lower
values of Pr.

Ž .Equation 25, the corrected analogy of Reichardt 1951
which provided the basis for many of the developments
herein, underpredicts Nu by about 10% at Pr s3, but is ex-
act at Pr s Pr s0.8673 and for Pr ™`.t

Ž .Equation 58 of Churchill 1977 may be observed to be su-
perior numerically to all but Eq. 41 for Pr ) Pr , but to mis-t
predict the computed values somewhat randomly and by as
much as 20% for Pr - Pr . It is even inferior to Eq. 31 in thist
latter regime. The predictions of Eq. 58 are even poorer for
aqs500 and 50,000 for small values of Pr.

All in all, Figure 3 constitutes a testimonial to the signifi-
cantly improved predictions provided by Eqs. 41 and 42 over
all prior expressions.

Validity, Empiricism, and Uncertainty
This section attempts to assess Eqs. 41 and 42, together

with their components Nu , Nu , Nu , and Pr rPr both qual-0 1 ` t
itatively and quantitatively in terms of their validity, their em-
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pirical content, and the consequent uncertainty of their pre-
dictions.

Equation 41 is free of any explicit empiricism, but is based
Ž .on the analogy of Churchill 1997a between energy and mo-

mentum transfer, which incorporates in its derivation some
conjecture, including the specific behavior represented by Eq.
19 for Pr s Pr and the asymptotic behavior represented byt
Eq. 15 for Pr ™`.

Equation 42 is purely conjectural and incorporates one
purely empirical exponent, namely 1r8 for Pr rPr. Its justifi-t
cation is analogic and pragmatic.

Equations 13 and 18 for Nu are exact unambiguously, but0
their numerical evaluation invokes empiricism by virtue of the

X X qqŽ .correlating equation for u ® , namely Eq. 4.
Equations 14 and 19 for Nu are exact insofar as a value of1

Pr exists for which Pr is independent of yq and aq. Thist
somewhat surprising aspect of behavior is actually predicted

wby renormalization group theory see, for example, Yahkot et
Ž . Ž .xal. 1987 and Elperin et al. 1996 for the turbulent core,

and is supported by most experimental data for the region
near the wall. The value of Pr for which Pr is independentt
of yq and aq is perhaps uncertain within the range of 0.79
to 0.87, but the effect of this uncertainty on the prediction of
Nu is negligible. The numerical evaluation of Nu also evokes1

X X qqŽ .empiricism by virtue of the correlating equation for u ® ,
namely Eq. 4.

The empiricism of Eq. 4 is represented by the coefficients
0.436 and 6.95 and the exponent y8r7. Although the conse-

X X qqŽ .quent uncertainty in the predictions of u ® may be as
much as 5%, the consequent uncertainty in 1qg , uq, andm
uq, and in turn in Nu and Nu , is probably less than 1% asc 0 1
a result of the smoothing provided by the intervening integra-
tions or double integrations.

The uncertainty in the correlative expressions for Nu and0
Nu , namely Eqs. 43 and 44, or their counterparts for other1
geometries and modes of heating, is less than 0.3%. Equa-
tions 43 and 44, and, thereby, even this small error, can be
avoided by calculating Nu and Nu by means of Eqs. 18 and0 1
19 or the equivalent.

The validity of the various forms of Eq. 15 for Pr ™` de-
pends on the existence of a finite limiting value for Pr ast
yq™0, and their accuracy depends on the 1r3-power of that
limiting value. Experimental data for Nu as well as for Prt
indicate a value in the range of 0.79 to 0.90. The correspond-
ing uncertainty in Nu is perhaps 2%. The Lagrangian and`

Eulerian direct numerical simulations of Papavassiliou and
Ž .Hanratty 1997 suggest that a limiting value for Pr may nott

exist for Pr )100. Pr is less than 100 for all ordinary fluids,
but these findings raise doubt as to the applicability of Eq. 41
for mass transfer, for which values of Sc much greater than
100 may be encountered. Even so, Eq. 41 remains applicable
if the appropriate value is utilized for Nu rather than that`

predicted by Eq. 15.
The uncertainty in Pr is greatly dampened in the predic-t

tion of Nu by Eqs. 41 and 42, as reasoned by Heng et al.
Ž . Ž .1998 and demonstrated by Yu et al. 2001 , who compared
the predictions of Nu for two radically different expressions
for Pr .t

All in all, the uncertainty in the values of Nu as predicted
by Eqs. 41 and 42 due to implicit empiricism is probably less
than 3% and most likely of the order of 1%. The assertion of

minimal empiricism is presumably justified in that sense. This
remarkable achievement in a subject of such basic complexity
is a consequence of the exploitation of analogies and asymp-
totes, as well as fortuitously to the dampening of uncertain-
ties by integrations.

Summary and Conclusions
Ž .Churchill et al. 2000 deduced a generic correlating equa-

tion free of any explicit empiricism based on the venerable
Ž .analogy of Reichardt 1951 . This expression only has validity

for Pr G Pr , but they devised a compatible analogue for Prt
F Pr by conjecture. They speculated that these two generict
expressions might be applicable for all geometries and modes
of heating, and confirmed this speculation graphically using

Ž .the essentially exact computed values of Heng et al. 1998
Ž .for a uniformly heated round tube, and of Danov et al. 2000

for parallel plates with two different modes of heating. This
result was subsequently reconfirmed by the even more accu-

Ž .rately computed values of Yu et al. 2000 for a round tube
with both isothermal and uniform heating. In the current in-
vestigation these representations were examined more criti-
cally and in greater detail. Despite the good overall agree-

Ž .ment found by Churchill et al. 2000 , significant discrepan-
cies were discovered for some particular values of Pr. Those
for Pr ) Pr were shown to be due to the idealizations madet
by Reichardt in order to be able to integrate analytically. It is
apparent that freedom from empiricism does not guarantee
exactness. The Reynolds analogy is another example of this
truism.

A greatly improved expression for Pr ) Pr with the samet
generality and freedom from empiricism was derived on the

Ž .basis of an analogy of Churchill 1997a . Again, a compatible
analogue for Pr - Pr was devised by conjecture, however,t
with the introduction of some empiricism as well this time.
The two new expressions represent the essentially exact com-
puted values for all aq)150 within about 0.25% for Pr ) Prt
and within about 1.0% for Pr - Pr . For all practical pur-t
poses, the predictions for a specified value of Pr rPr may bet
considered exact.

By virtue of the recognition of the similarity of the basic
structure of the Reichardt and Churchill analogies to the
staggered canonical correlating equation of Churchill and

Ž .Usagi 1972 for three regimes, the new expressions were dis-
covered to predict two sigmoidal transitions as Pr increases.
At least one such transition was predictable in principle from
many of the analogies of the past, but the second was appar-
ently never recognized because of the use of insensitive
graphical forms for display.

These new expressions were shown on the basis of a com-
parison with essentially exact computed values to be superior
both functionally and numerically to the many analogies and
correlating equations of the past.

Comparison of the final generic expressions in terms of
Pr rPr with experimental data is unessential and inappropri-t
ate since they are essentially exact. The only source of em-
piricism, even in Nu , Nu , and Nu , arises from the corre-0 1 `

lating equation for the turbulent shear stress, which is based
on experimental data to some extent, but even so, results in
almost no uncertainty in Nu.
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Some empiricism is required to predict values of Nu for
specified values of Pr rather than of PrrPr , namely an ex-t
pression for Pr . A general and well-accepted theoretical ort
empirical expression for this quantity does not yet exist, but,
fortunately, the predicted values of Nu are relatively insensi-
tive to Pr and the choice of a tentative predictive expressiont
thereof. The development of a reliable expression for Pr ist
the principal remaining task in turbulent convection.

Comparison of predicted values of Nu for specified values
of Pr with experimental data is not productive since the dis-
persion in even the best experimental data owing to the vari-
ation of physical properties with temperature, incomplete
thermal development, and undefined thermal boundary con-
ditions, is greater than the uncertainty in the predictions as-

Ž Ž . .sociated with Pr . See, for example, Churchill 1977 .t
The success of Eqs. 41 and 42 for such complex behavior

as turbulent convection suggests the potential of developing
equivalent theoretically based expressions for other aspects
of physical, chemical, and biological behavior. The long chain

�of development of these final two expressions for Nu Pr rPr,t
q4a provides guidance and encouragement for such applica-

tions. The blunt presentation of these final results without
the preceding analogies would be quite misleading in that
respect. For example, the potential generality of the Re-
ichardt analogy would not have been recognized without a
prior familiarity with the theoretical expressions for Nu and1
Nu , nor its extension for Pr - Pr without that for Nu .` t 0
Without the generalization of the Reichardt analogy, the sim-
plification and generalization of the Churchill analogy would
not have occurred even to the current authors. Without a
recognition of the similarity of the structure of Eqs. 22 and
27, Eq. 30 would not have been derived, and the surprisingly
simple functional character of the dependence of Nu on Pr
in Eqs. 30 and 42 for Pr - Pr would not have been deduced.t

Finally, Eqs. 41 and 42, together with Eq. 15c, and with
Eqs. 43 and 44 or their equivalents for other geometries and
modes of heating, appear to be the most accurate and com-
prehensive correlative equations for turbulent forced convec-
tion in channels and possibly for unconfined flows as well. As
such, they appear to be worthy of adoption in our textbooks,
handbooks, and computer codes in place of the traditional
ones examined in Figure 3. Equation 32 is recommended ten-
tatively for the prediction of Pr , with the expectation thatt
improved expressions will be devised in the near future.
Equation 5 and its analogues for other geometries are recom-
mended for the calculation of Re for a specified value of aq

or the equivalent.
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Notation
asradius of tube

q Ž .1r2a s a t r rmw

bshalf-spacing between parallel plates
Asarbitrary coefficient in Eq. 47
bshalf-spacing between parallel plates

q Ž .1r2b s b t r rmw
c sspecific heat capacity at constant pressurep

fs2t rru2 ; Fanning fraction factorw m
jsheat flux density in y-direction
ksthermal conductivity

msarbitrary exponent of Pr in Eq. 47
nsarbitrary exponent of Re in Eq. 47

Ž .Nus2 aj rk T yT ; Nusselt number for round tubew w m
� 4Nu s Nu Pr s00
� 4Nu s Nu Pr s Pr1 t
� 4Nu s Nu Pr ™``

1 � 4Nu s Nu Pr s Pr` ` t
Nu s intermediate asymptotei
� 4OO x sof order of magnitude x

psarbitrary exponent in Eq. 20
Prsc mrk; Prandtl numberp

X X X X X X X Xqq qq qq qqŽ . w Ž . x Ž . w Ž . xPr s Pr u ® 1y T ® r T ® 1y u ®t
qsarbitrary exponent in Eq. 21
Rs1y yra

Res2 au rrm; Reynolds number for round tubem
ScsSchmidt number
Ts time-averaged temperature
q Ž .1r2Ž .T s k t r T yT rm jw w w
T Xs fluctuating component of temperature
X X X XT ® s time-averaged value of T ®

X X X XqqŽ .T ® s rc T ® rjp
ustime-averaged axial component of velocity

q Ž .1r2u su rrtw
uXsaxial component of velocity

X X X Xu ® s time-averaged value of u ®
X X X XqqŽ .u ® sy ru ® rt

®Xs fluctuation of y-component of velocity
xsaxial coordinate

x spoint of onset of heating0
ysdistance from wall

� 4y z sarbitrary function of arbitrary variable
� 4 � 4y z s y z™00
� 4 � 4y z s y z™``
� 4 � 4y z s intermediate asymptote for y zi

zsarbitrary variable

Greek letters
asarbitrary coefficient in Eq. 29

Ž .Ž .gs jrj t rt y1w w
ds thickness of viscous boundary layer

q Ž .1r2d sd t r rmw
msdynamic viscosity

m sdynamic eddy viscosityt
rsspecific density
tsshear stress

� 4w z sarbitrary function of arbitrary variable
� 4C Pr rPr sarbitrary function of Pr rPrt t

Subscripts
csat centerline

Ž .msspace-mean value for temperature, weighted by u
wsat wall

mR2s integrated-mean with respect to R2

mR4s integrated-mean with respect to R4

muqs integrated-mean with respect to uq

X X2 qqw Ž . xwmR s integrated-mean, weighted by y u ® , with re-
spect to R2

X X4 qqw Ž . xwmR s integrated-mean, weighted by y u ® , with re-
spect to R4
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