
An Overview of Game Testing Techniques

Claudio Redavid

GSEEM Student at Mälardalen University

Västerås, Sweden

crd11001@student.mdh.se

Adil Farid

GSEEM Student at Mälardalen University

Västerås, Sweden

afd11003@student.mdh.se

ABSTRACT
The purpose of this paper is to analyze in general the process
of testing, developing video games, and describe in more de-
tail all the aspects of the test phases in a game development
process. The game industry has grown significantly in the
last decade and many companies have started to use soft-
ware engineering techniques in the game development pro-
cess. In game development process the development team
is divided into small teams that manage separate aspects
of a game. All developing processes and products are sub-
jected to test, for validation and verification. Modern soft-
ware testing techniques can be easily used in game develop-
ment as well, however it is not easy to test a game due to its
complexity, but customers and managers are putting hard
constraints on a game quality more and more frequently.
E↵ective testing techniques can reduce the testing time and
improve game quality and production time.

Keywords
Software Engineering, VideoGame, Software testing, Alpha
and Beta test, Game prototype, Game testing techniques,
Game test phases

1. INTRODUCTION
Software testing can be stated as the process of validating
and verifying software products, which meets the require-
ments that guided its design and development, works as
expected, and can be implemented with the same charac-
teristics [26]. Software Testing is one of the most important
phases of the software development process. As shown in
Figure 1 software engineering paradigm has evolve signifi-
cantly from procedural code to object oriented software, to
component based software; from thousand to million lines
of code with reliability, security, scalability, real time, safety
and performance requirements [19]. With the improvement
in complexity of software development process, testing is
getting more and more complex and critical. The simple
testing techniques used for procedural code were need to be
extended for object oriented coding techniques like polymor-
phism, binding and other new object oriented features. New
testing techniques were introduced for component based pro-
gramming. In traditional procedural coding, testing was the
last step of the software development process (i.e. test cases
are selected based on the source code), because of which
di↵erent factors like schedule slippage, cost constraints and
time-to-market pressure results in neglected testing. Nowa-
days testing techniques are applied throughout the software
development process based on di↵erent stages of software de-

velopment, increases the portion of testing before it actually
reach the testing team. New development methods like Ag-
ile often uses test driven development (TDD). The primary
purpose of the testing is to identify and correct failures in
the system, but testing can never completely identify the
defects with in software. That’s why, often diverse testing
is perform on di↵erent part of the software. A very famous
Murphy law states “The subtlest bugs cause the greatest
damage and problems” [5]. Some of the famous software
failures are:

• Ariane 5 rocket, a European Space Agency rocket ex-
plodes after 39 seconds at the altitude of 2.5 km be-
cause of a small bug in numbers conversion. It was
built in 10 years with the cost of $7 billion. Four ex-
pensive and uninsured scientific satellites also finishes
o↵ with it [14].

• Software errors in $193 million baggage-handling sys-
tem of the Denver International Airport not only cause
the delay in the opening of the airport but costing $1.1
million per day in interest [23].

• A Patriot Missile Failure on February 25, 1991 in Dha-
ran, Saudi Arabia results in 28 deaths. It was cause of
poor handling of rounding errors [4].

• The sinking of the sleipner A o↵shore platform in Gands-
fjorden near Stavanger, Norway, on August 23, 1991,
resulted in a loss of nearly one billion dollars. It was
found to be the result of inaccurate finite element anal-
ysis [4].

Videogames holds a big share of software products in actual
market. Video game industry is growing with an enormous
rate. According to [7], in June 2011, the global video game
industry was valued $65 billion, which was $62.7 billion in
2010. Video game industry has evolved significantly, from
simple 2D to complex 3D games, simple colors to real time
colors, simple GUI to interactive environment. With the in-
creasing demand of complex and real time games, di↵erent
game development and testing techniques have been devel-
oped to build e↵ective and complex games. Game devel-
opment and testing techniques are also important because
nowadays hundreds of people work together for developing
a new game. Video Game is a good teaching method, be-
cause sectors like economic, research and social needs more
e↵ective and motivating tools for learning [21].

Figure 1: From Procedural Programming to Component based Development

The remaining sections of the paper are distributed as fol-
lows. Section 2 discusses common testing techniques used in
software development process, section 3 discuss the general
process of Game development. Section 4 discusses the test-
ing techniques used commonly in game development. Sec-
tion 5 provides the summary of the article.

2. TESTING
According to Miller [18], “the general aim of testing is to
a�rm the quality of software systems by systematically ex-
ercising the software in carefully controlled circumstances”.
Software testing verify and validate the quality of the soft-
ware produced, so as to make sure that the system is bug
free and the results produced are according to the expec-
tation.Studies have shown that di↵erent testing techniques
targets di↵erent types of faults, therefore usually testing
teams apply di↵erent tests to ensure the software quality.
According to [19] we can divide software testing into di↵er-
ent methods.

2.1 Code Based testing
Code-based testing (also known as white box testing or struc-
tural testing) refers to the use of source code for planning
the test cases. Mostly developers perform Code-based test-
ing. Generally code based testing is represented through a
graph; either data flow or control flow graph. Code-based
testing allow the developers to test the most parts of soft-
ware that are rarely tested and ensures the most important
function point have been tested [26]. Code-based testing is
unit testing. A wide range of open source testing tools are
available for automated code-based testing. All tools cover
some sort of coverage criteria. There are di↵erent types of
coverage criteria for code-base testing i.e. statement cover-
age, branch coverage, condition coverage and path coverage.

2.2 Object Oriented testing
In Object Oriented testing we focus more on integration
and system testing rather than unit testing. Object ori-
ented testing is like procedural testing with some specific
characteristics, which makes it more diverse. All methods

in the class are tested with unit testing, messages and events
between classes are tested with integration testing where as
thread interaction and thread testing is performed by system
testing. JUnit [13] is the most popular testing framework for
Java code, NUnit and many other tools have been developed
for testing in other languages.

2.3 Component Based testing
A component is a unit of composition with contractually
specified interfaces and explicit context dependencies only.
Components are built for the purpose to be reused. Com-
ponent based testing is assembly of reusable components,
designed to meet the quality attributes identified during ar-
chitecting phase [19]. Di↵erent components in component-
based testing can be white box or black box because they
can be developed in-house or brought from external vendors.

2.4 Specification Based testing
Specification-based testing (or Black box testing) is a testing
method in which the tester did not know anything about the
internal structure , design or implementation [3]. Black box
test cases are derived from the design documents. Black box
testing mainly tests the functionality of the software. The
tester inputs the data and gets the output then the tester
check the produced output with the results specified in the
test case. Specification based testing is usually required due
to the following reasons; code unavailability, scalability, ac-
curacy and e↵ectiveness. Some forms of specification based
testing are:

Model based testing based on formal specifications:
Formal specification are used to generate models of a sys-
tem, to test the system guaranteeing high accuracy, objec-
tivity and repeatability then ad hoc based test derivation
for informal specifications. Many specification based testing
approaches has been proposed for formal languages like, Z,
CSP, CSS and Petri Nets. TorX, TGV and TVEDA are well
known tool for formal tests.

Model based testing based on grammatical specifi-

cations: Mostly refer to as UML1 based testing, and testing
based on model design through grammatical tools. AsmL,
TESTOR, UMLAUT, UML Test, AGEDIS and SCENTOR
are some of the automating tools work on di↵erent coverage
criteria.

Software Architecture based Testing: Software Archi-
tecture is the first document produced in software devel-
opment process. It breaks down the system in a number
of ways (component, connector, data elements). Software
architecture is the study of how these components can be
integrated in order to satisfy the desire functional and non
functional properties.

Other than conventional testing methods, there are some
non functional testing techniques which have an important
impact on the final product quality:

Risk Based testing : Risk base testing is the probability of
failure of a portion of code, as determined by its complexity
[16]. In software testing we think of risk failures in three
di↵erent dimensions. Way the software could fail, how likely
the software can fail, and what are the consequences of the
failure [10]. Risk based testing take care of the three possible
risk failures, and design test cases to trigger these failures.

Performance testing : The customer major concern about
software is its ability to meet performance requirement [6].
Performance tests determine how fast system or some parts
of the system can work under the particular workload. Load
testing, stress testing, configuration testing, spike testing are
some of the sub categorization of performance testing.

Recovery testing : In software, recovery testing is how well
application can recover from crashes, hardware failures and
other similar failures [24]. In recovery testing the application
is forced to fail, and then see how it recovers from the fail-
ure conditions and environment. Requirement specification
specifies the types and extent of the recovery.

Security testing : It is the process of determining how
safe the software works from external threats. The Infor-
mation system should protect data from external threats,
and maintain functionality as intended [9, 1]. The system
should be able to stop uncontrolled system access, operat-
ing system flaws, communication system flaws and weak en-
cryption algorithms. According to [9], a software security
practitioner should perform the following to manage system
security risks:

• creating security abuse/misuse cases,

• listing normative security requirements,

• performing architectural risk analysis,

• building risk-based security test plans,

• wielding static analysis tools,

• performing security tests,

• performing penetration testing in the final environ-
ment,

1Unified Modeling Language (http://www.uml.org/)

• cleaning up after security breaches.

3. GAME DEVELOPMENT PROCESS
Creating a game is more complex as it is believed. In 1980’s
only one or two person were involved in creation of a game,
while in 1990’s teams already included 10 people and later
in 2003’s the number was tripled. Today, typically for a big
game, in the entire process participate hundreds of people
[17]. For example in 2003, a team of 50 members work to-
gether to develop a game called Tony Hawk Underground.
In 2009, Assassins’s Creed II has a team of 450 developers.
Everyone has a specific duty in the development process.
Not only the team size has increased during this period,
even the number of lines of code has passed from 100-200
to thousands and, some times, millions of lines. Therefore a
kind of “organization” has become necessary. Software engi-
neering can came to help for solving this problem.

3.1 Game development roles
There are eight principal sectors in which the game devel-
opment teams can be divided:

• Design parts

• Coding parts

• Art parts

• Audio parts

• Management parts

• Quality Assurance parts

• Business parts

• Manufacturing parts

Designers have the important responsibility to invent an
original and funny game idea. The designer is the only
person to modify the original concept according to money
and time constraints. There are also levels and dialogues
designers for creating more exciting stu↵ for the game. A
programmer job is to implement all the code necessary for
running the game (3D engine, AI2 programming and tools),
respecting at the same time all the design artifacts. Artists
and audio experts put significant e↵ort to create more re-
alistic 3D models, textures and sound e↵ects. Management
of a game project is the most critical component. Managers
have to coordinate all the process steps and resources, re-
solve conflicts between artifacts and team members. This
sector includes the executive producers that have to solve
all the strategic company issues. Testers held the other crit-
ical part in a videogame life. Before the beta testing the
software has to be entirely tested, all its part must work as
expected. Beta phase is composed by voluntaries that play
the game again and again and report all the issue that they
have found. The non-fun part is played by business man.
They have to cut and squeeze the game to make ends meet.
Manufacturers serve as communication channel among the
development studio and the shops. An example of how to
compose a typical videogame development process is shown
in Figure 2.
2Artificial Intelligence

Figure 2: Typical connection between di↵erent field of game development process

3.2 Game development life cycle
Like a living organism, a game is born, lives and dies. Life
cycle of a videogame is composed by the following steps, as
explained in [11].

Concept Development. In this phase a small group of peo-
ple brainstorming for getting out a new idea for a game. Af-
ter the meeting a concept document is created, inside this
document there is a short but detailed description of the
videogame.

Preproduction. In this phase four artifacts are produced:
the game design document, the technical design document,
the project plan and a prototype of the game. In a game
project, it is very important to put e↵ort to create tech-
nical design document and game design document. Only
when they are 100 percent complete, the production of the
game can start formally. Technical design document should
specify what programming languages will be used, such as
C#, C++, SQL3, UnrealScript4, and should decide which
components for the game may be reused from existing soft-
ware or be licensed from third parties [8]. The game design
document and/or the technical design document may iden-
tify areas of the game that are likely to undergo significant
change during the development of the game. In this phase
managers or team leaders have to take a very critical deci-
sion: they can focus on the fun part and sacrifice the busi-
ness part or instead choose the business part and sacrifice
the customer wish/request/demand. In the preproduction
step software engineers try to identify, address, and reduce
or eliminate problems in the software development e↵ort be-
fore they cause the development e↵ort to fail. When a prob-
lem appears in the development process, a well formed risks
analysis can help to reduce and control damage.

3Structured Query Language
(http://en.wikipedia.org/wiki/SQL)
4A programming language for Unreal Game Engine
(http://wiki.beyondunreal.com/Legacy:UnrealScript)

Development. At the beginning it’s a good practices to
nominate functional leads for each subsystem of the game
[8]. This permits an e�cient division of the work and im-
proves experience of programmers. Therefore, it is necessary
to upgrade the level of the development group to produce
better games. The leads parcel out the game requirements
and game design document to each of the technical fields.
Frequently, UML schemas are used into the initial steps.
Use case diagrams, for example, illustrate the game design
document and the behavior of the various subsystems in the
game (Figure 3) [17]. Use case diagrams should be used as
the raw material to develop the static design of the software.
There are many requirements that games need to meet that
are not interacting with the player, these are called non vis-
ible requirements. In a typical game basic non-visible re-
quirements are: localization, Security, portability, database
management, concurrency among di↵erent threads. Soft-
ware engineering could help developers to write code faster
and correctly. Design patterns and documentation are good
practices, but for small project software engineering can be
dangerous [27]. If the small team spends a lot of time for
documenting, analyzing and planning, after there will be no
more time for coding, so all release dates will be postponed
resulting in customer dissatisfaction.

Alpha/Beta/Code Freeze. Planning a quality assurance plan
for tracking defects and bugs is a good technique during all
the development process. The test team must estimate the
number of bugs, they don’t have to waste time testing the
areas of the game they want to test. The most critical ele-
ment of the QA5 plan must be to articulate very clearly what
objective, measurable quality goal the game must achieve
before it is ready to be released. All software and all games
ship with bugs; knowing this, QA plan cannot be to sim-
ply test and fix the game forever until someone feels enough
pressure to ship the game. After alpha and beta fixing, the
code is blocked, so no more modifications are permitted.

5Quality Assurance

Figure 3: Di↵erent views in the design of the game

Release to Manufacture. Now is the time for truth. If all
things have been done right when the game is released some
gains should come early. This phase is not strictly related to
the development, but is important because even a videogame
is a business, someone spend money for realize it. Profits
should at least cover the outgoings. Make a game is not a
cheap adventure. In 2001 3,000 games were released for the
PC platform, only 100 or so of those titles turned a profit,
and of those only the top 50 made significant money for the
developers and publishers [8]. The principle problem of the
designers is that they fail to meet their financial expectations
because the developers fail to clearly articulate and implicate
their expectations. Knowing financial expectations it is the
only way for your game project to achieving success. It is
not necessary to point high gains, make a good plan for
the project, even if it is not a big game yet, can help a lot
for immediately earning something in the beginning and for
future improvements.

Patch/Upgrade. Finally, after the game is released the work
is not over, there is a dedicated team whose sole job is to
maintain the game. Maintaining a game means release patch
for fix some bugs, introduce new sta↵ in the game or give
help to customers.

4. TESTING IN GAMES
Testing plays a very important role in Games. A game is
tested at di↵erent level of its development process. Gener-
ally in software engineering practice, Software test plan doc-
ument contains all the information about testing the soft-
ware. But testing game is di↵erent from testing software.
There are many steps involved other than test cases for a
game mostly because almost all game testing is black box
testing. Game programmers usually don’t test their own
games, neither have time to fully test it, nor is it a good
idea to test by themselves. Game programmers only test
small pieces of their code before they submit it for integra-
tion with the rest of the game or as third party code to be
used by other game programmers. Figure 4 shows the ba-
sic cycle of game testing. According to [11] game testing is
performed in the following six step order.

Figure 4: Testing Life Cycle

Plan and design the test: Although much of this plan
and done earlier in software test plan document, but with
every new prototype of the game, this documents need to be
revisited to update any change in the specifications, new test
cases, new configuration support. The tester should insure
that no new issues were introduced.

Prepare the test: All the teams should update their code,
tests, documents and test environment and align it with one
another. The test development team should mark the bugs
fixed, and the test time should verify them.

Perform the test: Run the test suit again. If any defect
is found, test around the defect to make sure that the bug
is certain.

Report the results: Complete details about the bugs are
reported.

Repair the Bug: The test team participates in this step
by explaining the bug to the developing team and provides
direct testing to track the bug.

Return to step 1 and retest: A new build is produced
after one cycle.

Testing games is a repetitive process because new build may
have its own bugs and failed test.

Game testing is performed in a structured manner. Irrespec-
tive of the size of the game, and time required for producing
game, all game testing should follow the basic structure as
explained in [11, 25]:

Pre-production. Testing begins when the project begins.
Usually there is no tester in the beginning but project scope,
project design and assets are being produced in the starts
and need to be evaluated, reviewed and corrected. Software
test plan document is also produced in this early phases. A
good testing plan document set standards for the software.
There is not quality test in games. The quality of the game is
evaluated by code, graphics and sounds that are produced
and compiled into the game code. Proper documentation
testing (project plan, design and test plan) can help in fixing
problems sooner and cheaper. Delaying testing till the end
may cause some serious problems including project failure.

Kickoff. “The test kicko↵ illustrates the principle that in-
creasing an organization’s speed results from an iterative
process of identifying obstacles, designing a new process that
eliminates them, and ensuring that the new way is imple-
mented” [11]. Test kicko↵ has a very good impact on soft-
ware development, it is an opportunity to improve test un-
derstanding, test quality and test execution. Test kicko↵’s
address critical issues related to software under considera-
tion, like special test instructions, test execution questions
or issues, test improvement suggestions. Kicko↵s are very
beneficial at every lowest level of testing.

Alpha. Actual testing begins in this step. The Alpha proto-
type is tested against Alpha criteria established in planning
phase. During the course of Alpha tested, software devel-
oped by di↵erent programmers is linked together and game
design is fine tuned. Major feature of Alpha test is to play
the game from start to finish along some path and revised
it. All modules of the game are tested at least for once. It is
very critical to stick to the test plan, and carefully perform
the entire tests defined in the plan.

Beta. Beta Testing begins right after the end of Alpha test,
generally begins when game is feature complete. In beta
testing the focus is mostly on perfecting the game, the de-
velopers has already created. Beta test identifies and fixes
the remaining bugs. Beta testing is usually performed by
testers from outside the developing team. Main features of
beta testing are that tester can play game along all possi-
ble paths, the entire user interface is final, game logic and
AI is final, all controllers work and final artwork & audio is
implemented.

Gold. By the end of beta test the game is declared to be
“code freeze”. A brief intense period of testing is performed
on what is considered to be the final build of the game. All
the test suits (or as many as time permits) are rerun on
the game, to ensure that no old bug is reproduced. Any
bug in this stage delays the release of the game, since a new
version of the game is to be build after removing the bugs.
In Gold test all critical bugs (crashes, hangs, and function
failures) are solved. 90% of all major bugs (functionality
and performance) are fixed. 85% of all minor bugs (system
performance issues which a↵ects some of the user) are fixed.
And release level performance (i.e. 60-fps frame rate) is
achieved.

Release. Once the game passed the Gold test, the game is
delivered to the customer for installation or distribution to
the end users. The game quality in this phase is considered
to be su�cient for mass distribution.

Post-release. During its life cycle, if the game was shipped
with even one or two bad defects, it’s the time for the patch
or update. For each patch, the development team has to
revisit the entire list of bugs and incorporate some new pol-
ish features. Each individual bug fix or polish feature means

more testing (but should be planned). Each new patch must
be tested to see whether it works with the both the base
game and earlier patches version.

4.1 Game Testing Techniques
There are some testing techniques, which are more e↵ective
in game testing with respect to software testing. Some of
the important techniques are:

Combinatorial Testing: It’s always an important issue for
testers and software managers to decide how much testing
should be enough [11] Game quality has to be good enough
for customer, but testing has to stop before the release date.
It is neither practical nor economical, to test every possi-
ble combination of game event, configuration, function and
options. Skipping some testing or taking shortcuts is al-
ways risky. Combinatorial testing is a quick way to find
defects earlier in the game while keeping the test sets small,
covering as much area as possible. According to [12], the
key idea of combinatorial Testing is to detect the inter-
action failures. Since not every parameter contributes to
every failure, and most failures are triggered by a single
parameter value or interactions between two or more pa-
rameters. In combinatorial testing, parameters (individual
elements) are selected from game elements, functions and
choices such as game events, game settings, game play op-
tions, hardware setting, character attributes, customization
choices etc. The test then created can be homogenous (test
parameters of same type) or heterogeneous (test parameters
of di↵erent types). According to [2], combinatorial testing
is very e↵ective and beneficial such as it increases test ex-
ecution e�ciency (more than twice defects found per test
hour), provides better quality (more defects found overall),
better phase containment, reduce cost for both testing and
bug fixing and increase speed to market. Pairwise combi-
natorial tests provide a good balance of breadth and depth
of coverage, which allows tester to test more areas of the
game than concentrating resources on just a few areas. [15]
is an example of automation tool available for combinatorial
testing.

Test Flow diagrams: Test flow diagrams (TDF) are used
to create models representing game behavior from player’s
perspective. Testing takes place by exploring the model,
along all possible paths to explore the unexpected game
states. TDF is a formal approach to test design. Because
TDF is graphical in nature, it is easy to review, analyze and
provide feedback on test designs. Complex features can be
represented by complex TDF’s, but usually small TDF are
preferable.

Cleanroom testing: Cleanroom testing is derived from
Cleanroom Software Engineering. Cleanroom software engi-
neering process is the software development process intended
to develop software with a certifiable level of reliability [22].
Cleanroom testing techniques improves the reliability of the
game. This technique is applied to the problem of why the
user find bugs in the game after it has been through hun-
dreds of hours of testing before being released. The game
team’s test strategy in cleanroom test is to produce tests
that play the game the way user will play it.

Test Trees: Test tree is a usability technique for organizing

test cases, which helps in selection of proper set of tests for
a given set of code change. Test Tree improves the over-
all understanding of complex game features and take care
of potentially chaotic function, especially when these func-
tions interact with other game rules, functions and elements.
The test tree is constructed by decomposing the feature into
subset until the bottom nodes identify elements to use or
specification to perform during testing.

Play Testing: Play testing describes playing the game
for non functional features like balance, di�culty and most
importantly for “fun factor”. Unlike other game testing
techniques, play testing answers a very important question:
“Does the Game work well”. Play testing is more about
judgment than facts.

Adhoc Testing: Ad hoc testing is also sometime refers to
as general testing. It is less structured test. Ad hoc testing
allows tester to explore paths based on their intuition. There
are two kinds of ad hoc testing. First is free testing, which is
testing without any planning or documentation. The second
is direct testing, which is a single test, improvised to answer
a specific problem.

5. CONCLUSION
Software testing has become a very broad area over the last
decade. It is included in almost all the software engineering
development steps such as specification, design, implemen-
tation, maintenance, process and management issues. In
this work we have tried to give an over view of the testing
state of the art, by briefly introducing di↵erent methods of
testing.

We also introduce game development briefly. Game devel-
opment process is very complex, and may involve hundreds
of people. Many small teams work on di↵erent aspects of
software, which are then combined together. Game devel-
opment process is very well defined, with clear division of
responsibilities.

Game Developing team on average, spends more time on
testing than any other application development team. In
fact game development process is mostly based on black
box testing. Game testing sometimes became more com-
plex, because of the diverse development of di↵erent compo-
nents of the game. Testing plays an important role in every
development steps, and the developing team only moves to
the next level after approval from the testing team. Over
the years, software testing techniques have matured and are
fruitful, but still need to improve adequately. Only in US,
more than $22.6 billion can be saved by implementing an
improved testing infrastructure to enable and more e↵ective
identification and removal of software defects [20].

Some area of software testing like testing automation, self
testing, anti-model based testing are still not fully matured.
Significant amount of work is going on in software testing
and developing e�cient test processes and techniques and
tools that assist in the creation of quality software has be-
come the one of the most important research area of this
field.

6. REFERENCES
[1] Testing experience. The Magazine for professional

Testers, 2009.
[2] Combinatorial testing web site.

http://www.combinatorialtesting.com, October 2011.
[3] Di↵erences between black box testing and white box

testing.
http://softwaretestingfundamentals.com/di↵erences-
between-black-box-testing-and-white-box-testing/,
October 2011.

[4] D. N. Arnold. Some disasters attributable to bad
numerical computing.
www.ima.umn.edu/ arnold/disasters/disasters.html,
October 2011.

[5] R. Avidor. Murphy laws site. http://www.murphys-
laws.com/murphy/murphy-computer.html, October
2011.

[6] A. Avritzer, J. Kondek, D. Liu, and E. J. Weyuker.
Software performance testing based on workload
characterization. In Proceedings of the 3rd
international workshop on Software and performance,
pages 17–24, New York, NY, USA, 2002. ACM.

[7] L. B. Baker. Factbox: A look at the $65 billion video
games industry.
http://uk.reuters.com/article/2011/06/06/us-
videogames-factbox-idUKTRE75552I20110606,
October 2011.

[8] E. Bethke. Game Development and Production. Plano,
Texas, 2003.

[9] G. M. BRUCE POTTER. Software security testing.
IEEE COMPUTER SOCIETY, 2004.

[10] J. B. Cem Kaner. Risk-based testing.
[11] R. B. Charles P. Schultz and T. Langdell. Game

Testing All in One. Thomson Course Technology,
Boston, 2005.

[12] Y. L. D. Richard Kuhn, Raghu N. Kacker. Practical
combinatorial testing. NIST Special Publication
800-142, October 2010.

[13] S. L. Erik Hatcher. Java Development with Ants,
chapter Chapter 4 testing with JUnit. October 2002.

[14] J. Gleick. A bug and crash.
http://www.around.com/ariane.html, October 2011.

[15] R. Kuhn. Combinatorial Coverage Measurement Tool,
January 2010.

[16] A. G. Linda H. Rosenberg, Ruth Stapko. Risk-based
object oriented testing.

[17] P. McCarthy. Software engineering and game
development. University of Wisconsin-Platteville.

[18] E. F. Miller. Introduction to Software Testing
Technology. Second edition.

[19] H. Muccini. Software testing: Testing new software
paradigms and new artefacts. The Wiley Encyclopedia
of Computer Science and Engineering, pages
2716–2732, January 2009.

[20] B. Schechner. Software testing techniques. Getting
started with software testing.

[21] U. Wechselberger. Teaching me softly: Experiences
and reflections on informal educational game design.
University of Koblenz-Landau.

[22] Wikipedia. Cleanroom software engineering.
http://en.wikipedia.org/wiki/Cleanroom Software Engineering,

October 2011.
[23] Wikipedia. Denver international airport: Accidents

and incidents.
http://en.wikipedia.org/wiki/Denver International Airport,
October 2011.

[24] Wikipedia. Recovery testing.
http://en.wikipedia.org/wiki/Recovery testing,
October 2011.

[25] Wikipedia. Software release life cycle.
http://en.wikipedia.org/wiki/Software release life cycle#Alpha,
October 2011.

[26] Wikipedia. Software testing.
http://en.wikipedia.org/wiki/Software testing,
October 2011.

[27] J. P. F. with Omar Salem. Software Engineering for
Game Developers. Stacy L. Hiquet, Boston, 2005.

