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PERSPECTIVE 

Complexity Theory and Organization Science 

Philip Anderson 
Amos Tuck School, Dartmouth College, Hanover New Hampshire 03755-9000 

Abstract 
Complex organizations exhibit surprising, nonlinear behavior. 
Although organization scientists have studied complex organi­
zations for many years, a developing set of conceptual and com­
putational tools makes possible new approaches to modeling 
nonlinear interactions within and between organizations. Com­
plex adaptive system models represent a genuinely new way of 
simplifying the complex. They are characterized by four key 
elements: agents with schemata, self-organizing networks sus­
tained by importing energy, coevolution to the edge of chaos, 
and system evolution based on recombination. New types of 
models that incorporate these elements will push organization 
science forward by merging empirical observation with com­
putational agent-based simulation. Applying complex adaptive 
systems models to strategic management leads to an emphasis 
on building systems that can rapidly evolve effective adaptive 
solutions. Strategic direction of complex organizations consists 
of establishing and modifying environments within which ef­
fective, improvised, self-organized solutions can evolve. Man­
agers influence strategic behavior by altering the fitness land­
scape for local agents and reconfiguring the organizational 
architecture within which agents adapt. 
( Complexity Theory; Organizational Evolution; Strategic 
Management) 

Since the open-systems view of organizations began to 
diffuse in the 1960s, complexity has been a central con­
struct in the vocabulary of organization scientists. Open 
systems are open because they exchange resources with 
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the environment, and they are systems because they con­
sist of interconnected components that work together. In 
his classic discussion of hierarchy in 1962, Simon defined 
a complex system as one made up of a large number of 
parts that have many interactions (Simon 1996). 
Thompson (1967, p. 6) described a complex organization 
as a set of interdependent parts, which together make up 
a whole that is interdependent with some larger environ­
ment. 

Organization theory has treated complexity as a struc­
tural variable that characterizes both organizations and 
their environments. With respect to organizations, Daft 
(1992, p. 15) equates complexity with the number of ac­
tivities or subsystems within the organization, noting that 
it can be measured along three dimensions. Vertical com­
plexity is the number of levels in an organizational hier­
archy, horizontal complexity is the number of job titles 
or departments across the organization, and spatial com­
plexity is the number of geographical locations. With re­
spect to environments, complexity is equated with the 
number of different items or elements that must be dealt 
with simultaneously by the organization (Scott 1992, p. 
230). Organization design tries to match the complexity 
of an organization's structure with the complexity of its 
environment and technology (Galbraith 1982). 

The very first article ever published in Organization 
Science suggested that it is inappropriate for organization 
studies to settle prematurely into a normal science mind­
set, because organizations are enormously complex (Daft 
and Lewin 1990). What Daft and Lewin meant is that the 
behavior of complex systems is surprising and is hard to 
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predict, because it is nonlinear (Casti 1994). In nonlinear 
systems, intervening to change one or two parameters a 
small amount can drastically change the behavior of the 
whole system, and the whole can be very different from 
the sum of the parts. Complex systems change inputs to 
outputs in a nonlinear way because their components in­
teract with one another via a web of feedback loops. 

Gell-Mann (1994a) defines complexity as the length of 
the schema needed to describe and predict the properties 
of an incoming data stream by identifying its regularities. 
Nonlinear systems can difficult to compress into a par­
simonious description: this is what makes them complex 
(Casti 1994). According to Simon (1996, p. 1), the central 
task of a natural science is to show that complexity, cor­
rectly viewed, is only a mask for simplicity. Both social 
scientists and people in organizations reduce a complex 
description of a system to a simpler one by abstracting 
out what is unnecessary or minor. To build a model is to 
encode a natural system into a formal system, compress­
ing a longer description into a shorter one that is easier 
to grasp. Modeling the nonlinear outcomes of many in­
teracting components has been so difficult that both social 
and natural scientists have tended to select more analyt­
ically tractable problems (Casti 1994). Simple boxes-and­
arrows causal models are inadequate for modeling sys­
tems with complex interconnections and feedback loops, 
even when nonlinear relations between dependent and in­
dependent variables are introduced by means of expo­
nents, logarithms, or interaction terms. How else might 
we compress complex behavior so we can comprehend 
it? 

For Perrow (1967), the more complex an organization 
is, the less knowable it is and the more deeply ambiguous 
is its operation. Modem complexity theory suggests that 
some systems with many interactions among highly dif­
ferentiated parts can produce surprisingly simple, pre­
dictable behavior, while others generate behavior that is 
impossible to forecast, though they feature simple laws 
and few actors. As Cohen and Stewart (1994) point out, 
normal science shows how complex effects can be un­
derstood from simple laws; chaos theory demonstrates 
that simple laws can have complicated, unpredictable 
consequences; and complexity theory describes how 
complex causes can produce simple effects. 

Since the mid-1980s, new approaches to modeling 
complex systems have been emerging from an interdis­
ciplinary invisible college, anchored on the Santa Fe In­
stitute (see Waldrop 1992 for a historical perspective). 
The agenda of these scholars includes identifying deep 
principles underlying a wide variety of complex systems, 
be they physical, biological, or social (Fontana and 
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Ballati 1999). Despite somewhat frequent declarations 
that a new paradigm has emerged, it is still premature to 
declare that a science of complexity, or even a unified 
theory of complex systems, exists (Horgan 1995). 
Holland and Miller (1991) have likened the present sit­
uation to that of evolutionary theory before Fisher devel­
oped a mathematical theory of genetic selection. 

This essay is not a review of the emerging body of 
research in complex systems, because that has been ably 
reviewed many times, in ways accessible to both scholars 
and managers. Table 1 describes a number of recent, 
prominent books and articles that inform this literature; 
Heylighen (1997) provides an excellent introductory bib­
liography, with a more comprehensive version available 
on the Internet at http: //pespmcl.vub.ac.be/ 
Evocobib. html. Organization science has passed the 
point where we can regard as novel a summary of these 
ideas or an assertion that an empirical phenomenon is 
consistent with them (see Browning et al. 1995 for a path­
breaking example). 

Six important insights, explained at length in the works 
cited in Table 1, should be regarded as well-established 
scientifically. First, many dynamical systems (whose state 
at time t determines their state at time t + 1) do not reach 
either a fixed-point or a cyclical equilibrium (see Dooley 
and Van de Yen's paper in this issue). Second, processes 
that appear to be random may be chaotic, revolving 
around identifiable types of attractors in a deterministic 
way that seldom if ever return to the same state. An at­
tractor is a limited area in a system's state space that it 
never departs. Chaotic systems revolve around "strange 
attractors," fractal objects that constrain the system to a 
small area of its state space, which it explores in a never­
ending series that does not repeat in a finite amount of 
time. Tests exist that can establish whether a given pro­
cess is random or chaotic (Koput 1997, Ott 1993). Sim­
ilarly, time series that appear to be random walks may 
actually be fractals with self-reinforcing trends (Bar-Yam 
1997). Third, the behavior of complex processes can be 
quite sensitive to small differences in initial conditions, 
so that two entities with very similar initial states can 
follow radically divergent paths over time. Consequently, 
historical accidents may "tip" outcomes strongly in a par­
ticular direction (Arthur 1989). Fourth, complex systems 
resist simple reductionist analyses, because interconnec­
tions and feedback loops preclude holding some subsys­
tems constant in order to study others in isolation. Be­
cause descriptions at multiple scales are necessary to 
identify how emergent properties are produced (Bar-Yam 
1997), reductionism and holism are complementary 
strategies in analyzing such systems (Fontana and Ballati 
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Table 1 Selected Resources that Provide an Overview of Complexity Theory 

Allison and Kelly, 1999 

Bar-Yam, 1997 

Brown and Eisenhardt, 1998 

CalResCo Introduction to 
Complex Systems 

Capra, 1996 

Coveney and Highfield, 1995 

Cowan, Pines, and Meltzer, 1994 

Mainzer, 1994 

United Nations University, 1985 

Waldrop, 1992 

Weisbuch, 1991 

Written for managers, this book provides an overview of major themes in complexity theory and 
discusses practical applications rooted in experiences at firms such as Citicorp. 

A very comprehensive introduction for mathematically sophisticated readers, the book discusses the 
major computational techniques used to analyze complex systems, including spin-glass models, 
cellular automata, simulation methodologies, and fractal analysis. Models are developed to describe 
neural networks, protein folding, developmental biology, and the evolution of human civilization. 

Although this book is not an introduction to complexity theory, a series of small tables throughout the 
text introduces and explains most of the important concepts. The purpose of the book is to view 
strategic change through the lens of complexity theory. Brown and Eisenhardt contend that 
successful companies manage in turbulent environments by charting a strategic course that puts 
them on the edge of chaos, poised between order and disorder. 

Available at http:/ /www.calresco.org/intro .htm#def, this website provides a comprehensive 
introduction and set of links that introduce many different aspects of complexity theory. It is a good, 
free, and relatively nontechnical starting place for exploring the topic. 

Written for laymen, this book traces the development of systems theories, then discusses self­
organization and the mathematics of chaos theory. Complexity theory is discussed in the context of 
how life emerged from inert chemical components. 

Written for laymen, this book traces the history of thinking about computational complexity in 
mathematics. It discusses quite readably cellular automata, spin-glass models, neural networks, 
and genetic algorithms, self-organization, artificial life, and theories of brain functioning. 

This is a collection of papers presented at the Santa Fe lnstitute's Fall 1991 workshop on integrative 
themes of the sciences of complexity. Although no single chapter provides a comprehensive 
overview, taken together, the chapters thoroughly cover the predominant themes developed by 
scholars of complex systems. Six chapters introduce fundamental concepts; the rest provide a 
number of examples of complex adaptive systems (principally, but not exclusively, biological), while 
four explore cellular automata, self-organized criticality and the "edge of chaos," and the concept of 
emergence. 

Written at a high level but without extensive use of mathematics, this is a comprehensive overview of 
complex systems theory. Chapters describe different models in the context of the evolution of 
matter, the evolution of life, the evolution of the brain, the evolution of artificially intelligent 
computational systems, and the evolution of human society. 

A collection of chapters from a very early conference on complexity theory in 1984, this book no 
longer captures the main lines along which complexity theory has developed. Nonetheless, the 
individual chapters, though quite eclectic, remain thought-provoking. This book is more a source of 
interesting ideas than a comprehensive introduction to the field. 

Written for laymen, this book is a popular yet sophisticated introduction to complexity theory. It is the 
most readable introduction to the field for nonspecialists. In tracing the founding and early years of 
the Santa Fe Institute, Waldrop touches on applications of complexity theory to economic systems, 
Boolean networks and the NK model, genetic algorithms and classifier systems, self-organization 
and artificial life, and evolution to the edge of chaos. 

This is a methodological book, which introduces analytical techniques at the introductory graduate­
school level. Topics include cellular automata, neural networks, simulated annealing, Boolean 
networks, and evolutionary population dynamics. 

1999). Fifth, complex patterns can arise from the inter­
action of agents that follow relatively simple rules. These 
patterns are "emergent" in the sense that new properties 
appear at each level in a hierarchy (Holland 1995). Sixth, 
complex systems tend to exhibit "self-organizing" behav­
ior: starting in a random state, they usually evolve toward 
order instead of disorder (Kauffman 1993). 

The Evolution of Modern Complexity 
Theory 
As Simon (1996) has pointed out, these ideas have deep 
historical roots; the intellectual ferment reviewed by the 
works in Table 1 represents the third wave of interest in 
complex systems this century. First, the years after World 
War I saw an explosion of interest in holism and gestalt 
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theories. Then, cybernetics and general systems theory 
emerged after World War II, fueled by the success of 
wartime feedback-control devices and accelerated by the 
development of computers. These intellectual movements 
meant to replace reductionism with an appreciation for 
modeling interactions instead of simplifying them away. 
Presaging today's most enthusiastic "science of complex­
ity" boosters, one of the founders of cybernetics declared 
in 1955: "Science is at last giving serious attention to 
systems that are intrinsically complex" (Ashby 1981, p. 
219). 

Cybernetics emphasized coordination, regulation, and 
control using feedback loops (Ashby 1956). General sys­
tems theory (Forrester 1961, von Bertalanffy 1968) at­
tempted to elucidate deep principles underlying all types 
of systems whose components are linked by feedback 
loops. Both influenced the intellectual revolution that 
swept organization theory in the 1960s and ushered in a 
view of organizations as open systems (Katz and Kahn 
1978). The systems design school of organization theory 
(Haberstroh 1965) was based on a characterization of sys­
tems as a collection of black boxes connected by input­
output loops. A new breed of systems analysts designed 
work processes and organizational control systems 
around the ideas of systems theory and cybernetics 
(Beniger 1986). Pointing out that social organizations are 
more loosely coupled than most physical systems, Weick 
(1979) introduced a theory of organizing based on loosely 
coupled subassemblies called "double interacts," behav­
ioral cycles linking the behavior of two people in a set of 
feedback loops. Systems dynamics models continue to 
inform a broad stream of contemporary research (e.g., 
Samuel and Jacobsen 1997, and Sterman and Witterberg 
in this issue), and nonlinear dynamical systems theory has 
been used to study many complex, nonlinear behavior 
patterns (Epstein 1997). 

According to Simon (1996), the third wave of theories 
about complex systems is rooted in a new understanding 
of equilibrium that emerged in the late 1960s. Catastrophe 
theory (Thom 1975) explained how in some deterministic 
systems, a small shift in a parameter could send the sys­
tem to a very different equilibrium. Chaos theory ex­
plored how some dynamical systems that appear to be 
random are, in fact deterministic (Thietart and Forgues 
1995). Typically, such systems take the value of a vari­
able in time t, stretch it, then fold it to produce a new 
value at time t + 1 (Cohen and Stewart 1994). The 
stretching operation magnifies small initial differences, 
while the folding operation constrains the range of values 
to a relatively small volume of the state space. It is usually 
impossible to forecast the exact value of a chaotic system 
in nature, because small measurement errors between two 
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'apparently identical values at time t can lead to large 
differences at time t + 1. However, such systems are in 
equilibrium around a strange attractor, a limited region of 
the state space within which the system stays perma­
nently. Similarly, nonchaotic dynamical systems that ap­
pear to be random ("white noise") may in fact have un­
derlying structural time trends ("colored noise") as 
Dooley and Van de Yen's paper (this issue) discusses. 
Colored noise can have important effects on outcomes, 
such as the risk that a population will become extinct 
(Heino 1998, Ripa and Lundberg 1996), and it should not 
be confused with chaos or randomness. 

Cybernetics, general systems theory, catastrophe the­
ory, and chaos theory all address deterministic dynamical 
systems, systems where a set of equations determine how 
a system moves through its state space from time t to time 
t + 1. Another way of modeling complex behavior ex­
amines regularity that emerges from interaction of indi­
viduals connected together in complex adaptive systems 
(CASs). The hallmark of this perspective is the notion 
that at any level of analysis, order is an emergent property 
of individual interactions at a lower level of aggregation. 
Although there is no universally accepted paradigm for 
describing CASs (Gell-Mann 1994b), four elements char­
acterize models that have particularly interesting impli­
cations for organization theorists. 

Agents with Schemata. First, to model an outcome at 
a particular level of analysis, one assumes that the out­
come is produced by a dynamical system comprised of 
agents at a lower level of aggregation (Holland and Miller 
1991). For example, in a model of an organization, agents 
might be individuals, groups, or coalitions of groups. 
Each agent's behavior is dictated by a schema, a cognitive 
structure that determines what action the agent takes at 
time t, given its perception of the environment (at time t, 
or at time t - k if theoretical considerations suggest ap­
plying a lag structure). Different agents may or may not 
have different schemata (depending on one's theory), and 
schemata may or may not evolve over time. Often, 
agents' schemata are modeled as a set of rules, but sche­
mata may be characterized in very flexible ways. For ex­
ample, an agent may select one rule from a suite of pos­
sible rules, or it may invoke fuzzy rules, or its cognitive 
structure may be represented by a neural network ( de­
scribed in more detail later in this article). 

Self-Organizing Networks Sustained by Importing En­
ergy. Second, agents are partially connected to one an­
other, so that the behavior of a particular agent depends 
on the behavior ( or state) of some subset of all the agents 
in the system. In systems dynamics models, variables are 
connected to one another by feedback loops; in CAS 
models, agents are connected to one another by feedback 
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loops. Each agent observes and acts on local information 
only, derived from those other agents to which it is con­
nected. Unlike cybernetic control theories, no single com­
ponent dictates the collective behavior of the system: 
such systems self-organize (Drazin and Sandelands 
1992). Maintaining a self-organized state requires im­
porting energy into the system (Prigogine and Stengers 
1984). 

Coevolution to the Edge of Chaos. Third, agents co­
evolve with one another. Each agent adapts to its envi­
ronment by striving to increase a payoff or fitness func­
tion over time (Holland and Miller 1991). Each 
individual's payoff function depends on choices that 
other agents make, so each agent's adaptive landscape­
mapping its behavior to its realized outcomes-is con­
stantly shifting (e.g., Levinthal 1997). The equilibrium 
that results from such coevolution is dynamic, not static: 
small changes in behavior at time t can produce small, 
medium, or large changes in outcomes at time t + 1, 
according to a power law (see Morel and Ramanujam, 
this issue). Unlike chaotic equilibria, where small 
changes in behavior frequently cause large changes in 
outcomes, power-law equilibria lie at the edge of chaos 
(Kauffman 1993). 

Recombination and System Evolution. Fourth, com­
plex adaptive systems evolve over time through the entry, 
exit, and transformation of agents. New agents may be 
formed by recombining elements of previously successful 
agents. Furthermore, the linkages between agents may 
evolve over time, shifting the pattern of interconnections, 
the strength of each connection, and its sign or functional 
form. CASs can contain other complex adaptive systems, 
as, for example, organisms have immune systems (Gell­
Mann 1994a). 

CAS models represent a genuinely new way of sim­
plifying the complex, of encoding natural systems into 
formal systems. Instead of making nonlinear systems 
tractable by reducing them to a set of causal variables and 
an error term, CAS models typically show how complex 
outcomes flow from simple schemata and depend on the 
way in which agents are interconnected. Rather than as­
suming that aggregate outcomes represent a homeostatic 
equilibrium, they show how such outcomes evolve from 
the efforts of agents to achieve higher fitness. By not forc­
ing scholars to understand all the parts of a complex sys­
tem in a holistic way, they allow investigators to focus 
on an agent in its local environment. It becomes possible 
to grasp complex behavior by varying assumptions about 
the schemata, connections, fitness functions, or popula­
tion dynamics that characterize the agents. CAS models 
afford exciting new opportunities for analyzing complex 
systems without abstracting away their interdependencies 
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and nonlinear interactions. This is particularly important 
for organizational scholars because interdependency is 
central to modem conceptions of what an organization is 
(Barnard 1938, Thompson 1967). 

In the next section, I discuss each of these four features 
in greater detail, examining how each contributes to or­
ganization theory. Then I tum to a discussion how these 
ideas might lead to new ways of modeling organizational 
phenomena, and conclude by assessing how complexity 
theory creates new directions for research in strategic 
management. 

Key Elements of Complex Adaptive 
Systems Models 
Agents with Schemata 
Most conceptual and empirical models employed by sci­
entists studying organizations use a set of independent 
variables to explain variation in one or more dependent 
variables. Typically, outcomes at one level are explained 
by causal drivers at the same level of analysis. CAS mod­
els take a different approach. They ask how changes in 
the agents' decision rules, the interconnections among 
agents, or the fitness function that agents employ produce 
different aggregate outcomes. These models are inher­
ently multilevel, because order is considered an emergent 
property that depends on how lower-level behaviors are 
aggregated. Accordingly, they respond well to contem­
porary calls for more integrative, cross-level research in 
organization science (Rousseau and House 1994). 

CAS models and ordinary causal models are comple­
ments, not rivals. It is not necessary for scholars to adopt 
one or the other as the best way to analyze organizations. 
Causal theories and tests that relate variables on the same 
level identify important aggregate regularities and factors 
that help create them. CAS models build on this foun­
dation, explaining observed regularities as the product of 
structured, evolving interactions among lower-level units. 
Good CAS models should not only explain established 
findings, but successfully predict new aggregate regular­
ities and aggregate-level causal relationships. 

Routinely, CAS models characterize agents as follow­
ing a set of rules (Gell-Mann 1994). Rule-based models 
are also common in organization theory (Carley 1995), 
but representing human actors in this way is problematic. 
Institutional theorists have shown that rules are often ra­
tionalized myths (Meyer and Rowan 1977). Individual 
goals and intentions may be only loosely related to be­
havior (March and Olsen 1976), and rules may well be 
inferred from behavior instead of causing behavior 
(Weick 1979). Scholars who view organizations as nat­
ural systems have shown that rules often do not govern 
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actions; rules can change without behavioral conse­
quences, and behavior can change without modifications 
to rule systems (Scott 1992). 

Agents in CAS models need not be the prisoners of a 
fixed set of rules. In Boulding' s 1956 arrangement of gen­
eral systems according to their complexity, social systems 
are distinguished by the fact that symbol-processing ac­
tors who share a common social order organize infor­
mation from the environment into a knowledge structure. 
Simon (1996) distinguished recipes (feedback-triggered 
sequences of specific activities) from blueprints, images 
of the environment that attempt to capture its salient com­
plexity. In routinized situations, actors can employ reci­
pes, but in the face of greater uncertainty, problem­
solving responses based on these blueprints are necessary 
(March and Simon 1958). In social psychology, such 
blueprints are termed "schemata" (Rumelhart 1984). 

The social order that characterizes Boulding's social 
systems arises from interactions among agents (Mead 
1934). In the symbolic interaction perspective, individual 
actors struggle for control of shared interpretation; roles 
and rules are negotiations and gambits in the struggle to 
define meaning. Because agents in CAS models can be 
endowed with schemata more complicated than simple 
rule systems, they can capture this struggle over meaning. 
In so doing, they can help integrate interpretivist and pos­
itivist views of organizations (Lee 1990), by providing 
clear ways for scholars in the interpretive tradition to de­
scribe the meanings that actors in a particular complex 
historical situation construct together. 

For Gell-Mann (1994a), the characteristic that distin­
guishes a complex adaptive system from evolving yet 
nonadaptive systems, such as galaxies, is that it con­
denses environmental regularities into schemata. Further­
more, Gell-Mann argues that complex adaptive systems 
encode their environments into many schemata that com­
pete against one another internally. An organizational ex­
ample is the competing interpretive structures inside Intel 
that allowed internal selection processes to produce 
organizational-level adaptation, as the firm abandoned 
memory chips to focus on microprocessors (Burgelman 
1994). 

Because agents can possess multiple competing sche­
mata at any one time, CAS models embody Campbell's 
(1974) idea that evolution occurs through a nested hier­
archy of selective systems. Evolving actors develop vi­
carious selective systems so that they can experiment and 
fail without being killed; for example, animals have in­
herited instinctive pattern-recognition systems that let 
them identify potential predators and flee. Such indirect 
selective systems are nearly universal, because animals 
that fall heir to them from their ancestors are more likely 
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to survive. Because schemata can evolve more rapidly 
than agents can, complex adaptive systems enjoy similar 
selective advantages when they allow schemata to com­
pete and reinforce those that seem to be associated with 
favorable outcomes. In contrast, evolutionary game the­
ory (Weibull 1995) models repeated games played over 
and over again by actors who are preprogrammed to im­
plement a single strategy. Only the disappearance of ac­
tors whose strategies fail can alter the distribution of strat­
egies in a population. 

The notion that society is a "marketplace of ideas" is 
commonplace, but models of organizations in which 
knowledge structures compete with one another and 
evolve are rare. One promising avenue of inquiry that the 
CAS perspective opens up is exploration into how ideas, 
initiatives, and interpretations form an internal ecology 
within an organization. As McKelvey (1997) points out, 
organizational scholars have emphasized macroevolution 
(within organizational populations) at the expense of mi­
croevolution (within organizations). As CAS modeling 
concepts diffuse within organization science, we can ex­
pect to see more attention paid to the coevolution of ac­
tors and their knowledge structures (A. Lewin et al. 
1999). 

Paul et al. (1996) provide an interesting example of a 
model incorporating the simultaneous evolution of agents 
and their schemata. In their organization, nine agents em­
ploying different decision rules must all contribute to an 
aggregate decision. Action is taken only if all nine agents' 
recommendations are congruent. A decision mechanism 
is specified that controls which agents' output is required 
to activate other agents. Paul et al. specify a fitness func­
tion that the organization tries to meet and a feedback 
function that compares the outcome of each decision op­
portunity with the performance objective. Through a 
competitive bidding process, agents that contribute to 
successful decisions are more likely to be utilized in fu­
ture decisions. Variation is introduced into this model by 
endowing new agents with hybrid decision rules that 
combine aspects of the decision rules that high­
performing agents have employed. Models such as this 
are an important building block for future organizational 
research that adopts a CAS perspective. 

Self-Organizing Networks Sustained by Importing 
Energy 
As Drazin and Sandelands (1992) point out, systems that 
consist of independent actors whose interactions are gov­
erned by a system of recursively applied rules naturally 
generate stable structure. They self-organize; pattern and 
regularity emerge without the intervention of a central 
controller. When we observe order in a system, they ar­
gue, we should search for a set of rules that explain how 
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connections between agents at time t influence connec­
tions at time t + 1. Rules generate structure because the 
state that is the output of one application of rules becomes 
the input for the next round. As Weick ( 1979) notes, man­
agers often get in the way of activities that have their own 
self-regulation, form, and self-correcting tendencies. 

Self-organization, or "autogenesis," is the natural result 
of nonlinear interaction, not any tendency of individual 
agents to prefer or seek order (Fontana and Ballati 1999). 
When the interactions of large numbers of components 
involve positive feedback loops, some behaviors self­
amplify, quickly crowding out others. Groups of com­
ponents become locked into self-reinforcing feedback 
cycles that lead to predictable collective behavior. Inter­
acting microscopic entities form macroscopic structures 
that simplify the input structure of other macroscopic 
structures (Drazin and Sandelands 1992). 

Self-organization only occurs in open systems that im­
port energy from the outside (Prigogine and Stengers 
1984). The second law of thermodynamics states that 
closed systems degenerate to a fixed-point equilibrium 
characterized by maximum disorder. In contrast, a "dis­
sipative structure" is an organized state that arises when 
a system is maintained far from thermodynamic equilib­
rium because energy is constantly injected into it. 

Organizations are dissipative structures that can only 
be maintained when members are induced to contribute 
energy to them (Barnard 1938). Social entities always 
self-organize as long as their members contribute work; 
this is why informal structures emerge and persist in a 
way that is remarkably robust to changes in the formal 
organizational structure. Those with influence and/or au­
thority tum the heat up or down on an organization by 
recruiting new sources of energy (e.g., members, sup­
pliers, partners, and customers), by motivating stakehold­
ers, by shaking up the organization, and by providing new 
sets of challenges that cannot be mastered by hewing to 
existing procedures. Generally, the more turbulent an or­
ganization's environment is, the more energy must be 
generated to keep the system above the threshold beyond 
which self-organization is sustained. 

When we observe complex aggregate structures, such 
as multinational corporations or the economic web of Sil­
icon Valley, we need not search for complex building 
blocks. A defining feature of complexity is that self­
organization is a natural consequence of interactions be­
tween simple agents. Paradoxically, scholars have ab­
stracted away nonlinear interactions for the sake of 
analytical tractability, even though such interactions are 
the key to the emergence of pattern. When there are too 
few components or not enough interactions among them, 
patterns tend not to emerge (Weick 1979). Instead of 
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making nonlinear systems tractable by modeling complex 
building blocks with few interactions, we can make them 
understandable by modeling simple building blocks with 
many interactions. 

Order requires, however, that the number of interac­
tions stay within an upper boundary as well as a lower 
one. Order arises in complex adaptive systems because 
their components are partially, not fully, connected. Sys­
tems in which every element is connected to each other 
in a feedback loop are hopelessly unstable (Simon 1996). 
Instead, CASs tend to form a decompositional hierarchy, 
in which elements are loosely coupled with one another 
(Simon 1996). Most components receive inputs from only 
a few of the system's other components, so change can 
be isolated to local neighborhoods. 

When all organizational actors are interconnected with 
one another, either decay results (if feedback loops 
quickly dampen out change) or chaos ensues (if changes 
keep reverberating throughout the system). In complex 
adaptive systems, agents only act on information avail­
able in their immediate environments, from those few 
agents connected to them in a feedback loop. Simple 
mathematical models that capture pattern formation tend 
to rely on local activation and long-range inhibition of 
behaviors (Bar-Yam 1997). For example, in studies of 
Boolean networks (Kauffman 1993, analyzed in detail by 
McKelvey in this issue), order emerges when agents re­
spond to inputs from just two other agents. A two-input 
system is homeostatic; when the system is perturbed from 
its attractor (a limited range of the network's state space 
that it occupies), it tends to return. When networks are 
more densely connected, so that each agent's behavior is 
influenced by the outputs of three or more agents, ho­
meostasis collapses: stable states are delicate, because 
small changes to a few elements can send them careening 
off to a new attractor. (The only exception occurs when 
each element's schemata are so fixed that it produces the 
same output for virtually every combination of inputs it 
receives from other agents). 

Applied to organizations, CAS models will require 
scholars to specify the pattern of connections among 
agents, not the pattern of connection among variables (as 
in path models). This has been done extensively in studies 
that draw upon social network theory and analytical tech­
niques (Wasserman and Faust 1994). Social network 
analyses typically examine the structure of a network at 
a single point in time, but Frank and Fahrbach's paper 
(this issue) shows how they can be viewed as evolving 
dynamical systems. Although social network analysis is 
a well-established technique in organization science, 
most studies of networks focus on the presence or absence 
of a particular kind of tie between actors (Mizruchi 1994). 
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For CAS models, establishing the presence or absence of 
a tie between actors must be treated as a preliminary step. 
CAS models require us to specify how the behavior of an 
actor at time t influences the behavior at time t ( or time t 
+ 1 if there is a lag) of others with whom the actor has 
ties. A number of simulation models have taken this step 
(Burton and Obel 1998). However, there is no accepted, 
standard way to model organizational or interorganiza­
tional networks in the abstract, and the outcomes of many 
simulations are sensitive to small changes in the assumed 
structure of connections among actors. CAS modeling 
will require a melding of these two approaches, using 
empirical observations of behavioral ties at several time 
points as the basis for simulating how different types of 
networks will evolve. 

Such models will also gain explanatory power when 
scholars take into account how a continuous injection of 
energy is necessary to sustain a pattern of interactions in 
a network. Most simulations abstract away the problem 
of how to energize the making, breaking, and mainte­
nance of ties. They specify a particular pattern of inter­
actions without assigning to each interaction a probability 
of occurrence related to the effort that agents allocate to 
it. Self-organization does not occur absent a continual 
flow of energy into a system, yet studies of how managers 
energize organizations have been divorced from inquiries 
into how pattern and structure emerge and evolve. The 
effort level of organizations waxes and wanes as man­
agers propel them into new domains, bring new chal­
lenges and goals to the attention of members, make and 
break connections internally and externally, alter reward 
systems, and manipulate symbols. Understanding the 
causes and consequences of injecting energy into an 
evolving network of agents is an important topic for fur­
ther research. 

Coevolution to the edge of chaos. 
Complex adaptive systems theories presume that the ad­
aptation of a system to its environment emerges from the 
adaptive efforts of individual agents that attempt to im­
prove their own payoffs. Consistent with notions of 
bounded rationality (March and Simon 1958), agents are 
presumed unable to forecast the system-level conse­
quences of their individual choices, and so they optimize 
their own fitness, not that of the organization. Each agent 
is adaptive if its actions can be assigned a value (payoff, 
fitness) and the agent behaves so as to increase this value 
over time (Holland and Miller 1991). The landscape on 
which agents adapt continually shifts, because the payoffs 
of individual agents depend on the choices that other 
agents make (Levinthal 1997; McPherson and Ranger­
Moore 1991). Agents (and clusters of agents that form 
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stable subsystems) coevolve with one another, because 
changes in the distribution of behaviors among agents 
change individual fitness functions, and such shifts in tum 
alter behaviors (Robertson and Grant 1996). Local ad­
aptations lead to the formation of continually evolving 
niches, so complex adaptive systems operate far from the 
equilibrium of globally optimal system performance 
(Holland and Miller 1991). 

Morel and Ramanujam (this issue) argue that the ap­
parent disequilibrium facing coevolving adaptive agents 
is actually a dynamic equilibrium. Bak (1996) has pro­
posed that all complex adaptive systems evolve to a "criti­
cal state" that differs from traditional definitions of equi­
librium. In an ordinary equilibrium state, small changes 
in the state of a system are self-correcting; the system 
quickly adjusts, and settles back into its attractor state(s). 
In the state of self-organized criticality, a dynamic equi­
librium prevails, such that small changes in behavior can 
have small, medium, or large impacts on the system as a 
whole, according to a power law. Power laws can have 
different functional forms, but they imply that larger sys­
tem changes occur exponentially less frequently than 
smaller ones do: in general, y = pxa where y is the fre­
quency of a change and x is the magnitude of the change. 
Bak's well-known experiment illustrating self-organized 
criticality involves dropping grains of sand onto a sand 
pile. The addition of a single grain usually causes very 
small landslides or cascades, but it also generates ava­
lanches of all sizes, roughly with a frequency 1/x where 
x is the size of the avalanche. 

Why would systems of interacting, coadapting agents 
evolve to this state? For example, what would explain the 
findings of J!l,irgensen et al. (1998), who contend that the 
relationship between body size and abundance for species 
in an ecosystem is a power law, and the frequency with 
which observed changes exceed a given change follows 
a power law? As Morel and Ramanujam discuss in this 
issue, many mathematical models generate power-law 
outcomes; such distributions are the stationary state of 
any stochastic process where the probability of an event 
is proportional to the number of times it has occurred in 
the past. The fact that a system generates changes that 
follow a power-law distribution does not demonstrate that 
it has evolved to the critical state and remains poised 
there. Two different lines of reasoning have led different 
scholars to conjecture that evolution drives complex 
adaptive systems to this state. 

Kauffman (1995) argues that all complex adapting sys­
tems evolve to the edge of chaos, the point where small 
and large avalanches of coevolutionary change cascade 
according to a power law, because this state gives them 
a selective advantage: Systems that are driven to (but not 
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past) the edge of chaos out-compete systems that do not, 
he suggests. Using the image of an adaptive landscape 
(discussed in detail by McKelvey and by Levinthal and 
Warglien, this issue), Kauffman suggests that if small 
changes in behavior lead only to small cascades of coevo­
lutionary change, the system's performance can never im­
prove much. On the other hand, if small changes in be­
havior lead to wildly different fitness levels (as occurs in 
chaotic environments), systems can reach extraordinary 
fitness peaks but cannot remain on them. The slightest 
change in behavior will send the system tumbling off its 
peak, perhaps plunging into a region of very low fitness. 
It is in the intermediate region that maximum system fit­
ness will be found, Kauffman contends. Because fitness 
peaks tend to be located near each other, evolutionary 
search and selection can function efficiently. However, 
the occasional large coevolutionary cascade associated 
with small changes in behavior allows the system to leap 
to higher fitness peaks than it would likely locate through 
evolutionary refinement. 

Building on these ideas, Brown and Eisenhardt (1998) 
have suggested that the most effective organizations 
evolve strategies that lie at the edge of chaos. Like Weick, 
(1979, p. 215), they argue that organizations can continue 
to exist only if they maintain a balance between flexibility 
and stability. Additionally, they contend that the strategic 
equilibrium over time for an organization is a combina­
tion of frequent small changes made in an improvisational 
way that occasionally cumulate into radical strategic in­
novations, changing the terms of competition fundamen­
tally. 

The second line of reasoning leading to the conjecture 
that complex adaptive systems naturally evolve to the 
edge of chaos follows Bak's observation that this state is 
the outcome of evolutionary processes that alter the fit­
ness of the least-fit element of the system. Bak suggests 
that selection frequently replaces the weakest agent in a 
collectivity with one drawn randomly from a pool of can­
didates. Organizations tend to replace their least efficient 
members; the least effective firms in an industry tend to 
go bankrupt and be replaced by new entrants, and the 
most poorly adapted species in an ecosystem tends to be­
come extinct. Ordinarily, a new element drawn randomly 
will have higher fitness than the weak one it replaced, 
setting off a cascade of coevolutionary adaptation. Bak 
demonstrates that in a wide variety of circumstances, 
these cascades follow a power law. It is this line of rea­
soning that leads both McKelvey and Morel and 
Ramanujam (this issue) to call for more investigation into 
organizational systems that evolve through the selecting­
out of their weakest elements. 

The idea that a system such as an organization will 
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experience many small changes punctuated by infrequent, 
irregular, massive changes is familiar in organization the­
ory (Gersick 1991). Most punctuated-equilibrium models 
set forth by organizational scholars rely on arguments that 
inertia builds up over time until the degree of misfit be­
tween an organization and its environment provokes a 
crisis (e.g., Cyert and March 1963, Gresov et al. 1993, 
Romanelli and Tushman 1994). Complexity theory does 
not invoke inertia to explain punctuated equilibrium. 
Rather, it suggests that a pattern over time of large and 
small changes is what one would expect from a system 
of coevolving agents subjected to selection pressures (as 
illustrated by Morel and Ramanujam's model, this issue). 
This does not invalidate inertial theories of punctuated 
equilibrium; it simply suggests a rival explanation that 
holds even in situations where inertia is weak. 

The conjecture that agents coevolve on a fitness land­
scape to a state poised between order and chaos is an 
intriguing one, and Kauffman's "NK'' adaptive landscape 
models have been very influential. Nearly a quarter of the 
56 papers submitted for this special issue drew on 
Kauffman's models, far more than relied on any other 
approach to complex systems. McKelvey's paper (this 
issue) criticizes the NK model cogently and suggests im­
provements to it. Additionally, students of complex sys­
tems must come to grips with the problematic nature of 
the fitness function concept. In Kauffman's adaptive land­
scape metaphor (borrowed from Wright 1931), fitness is 
depicted as the z-axis on a three-dimensional landscape. 
Agents are depicted as climbing uphill toward higher fit­
ness. In biology, where this mental image originated, fit­
ness is a relatively unambiguous construct: the more off­
spring an organism contributes to the next generation, the 
fitter it is. However, organizational fitness is a much more 
complex affair. 

Scholars who viewed organizations as natural systems 
noted early on that organizations must pursue mainte­
nance goals as well as output goals (Scott 1992). Early 
institutional theorists ( e.g., Selznick 1957) produced 
many rich case studies showing how organizations turned 
away from their original goals in response to environ­
mental demands. Later institutional theorists (e.g., Meyer 
and Rowan 1977) pointed out that organizations must op­
timize much more than a single numeraire (e.g., profit) to 
survive and grow. Friedlander and Pickle (1968) showed 
that organizations that perform well on a criterion pre­
ferred by one constituency tend to do poorly on a criterion 
favored by another. Simon (1996) argued that even sim­
ple output goals are complex and multifaceted. 

Agents at any level of analysis face far more compli­
cated adaptive landscapes than CAS models have envi­
sioned to date. Hill-climbing toward higher fitness on one 
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measure may cause performance to deteriorate on others. 
The image of a rugged adaptive landscape presumes that 
conflicting selection pressures can somehow be aggre­
gated into a single measure of performance. In reality, 
organizations and the individuals in them juggle a host of 
conflicting expectations and assessments that create a 
payoff function too difficult to assess and optimize 
(March and Simon 1958). Fitness is a complex combi­
nation of returns to exploitation, returns to exploration, 
and returns to reputation, market position, and capabili­
ties built from past adaptations (A. Lewin et al. 1999). 
Additionally, many organizations fall considerably short 
of the frontier defining the highest fitness attainable, and 
the actions of firms move this frontier, leading to a cas­
cade of changes within and among actors. Consequently, 
the adaptive landscape metaphor that underlies present­
day studies of agents coevolving to the edge of chaos 
must not be pushed too far. 

Recombination and System Evolution 
As Simon (1996) has pointed out, any adaptive entity 
contains an adaptive inner environment; complex adap­
tive systems are nested hierarchies that contain other 
complex adaptive systems. These subsystems are there­
fore themselves subject to evolutionary pressures. Every 
aspect of a complex adaptive system-agents, their sche­
mata, the nature and strength of connections between 
them, and their fitness functions-can change over time: 
new ones may appear, old ones may become extinct, and 
existing ones may survive in a fundamentally new form. 
Models of organizational life that build on CAS theories 
need not simply endow agents with schemata, connec­
tions, and adaptive behavior. They can also allow these 
elements to evolve. 

A fundamental aspect of complex adaptive systems is 
that they allow local behavior to generate global charac­
teristics that then alter the way agents interact (Burkhart, 
1996). Actions not only proceed along feedback loops, 
they can also change these loops. In traditional causal 
models, the relationship between variables is presumed 
to be fixed, but in CAS models, the evolution of the net­
work that links agents is an important object of theorizing 
and empirical observation in its own right. In organization 
science, studies of how social ties are broken and recon­
stituted (e.g., Palmer 1983, Stearns and Mizruchi 1986) 
provide particularly useful insights for scholars who wish 
to view organizations as complex adaptive systems. 

Additionally, complex adaptive systems can evolve 
when new agents or new schemata are introduced. They 
may be drawn from a pool of candidates outside the sys­
tem, or they can be generated by recombining elements 
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of existing agents or schemata. In a number of CAS mod­
els (e.g., Holland 1995), the schemata of the most suc­
cessful agents in a system are copied and then spliced 
together into a new schema, a process deliberately pat­
terned after the recombination of chromosomes that takes 
place in biological reproduction. Levinthal and 
Warglien's paper (this issue) discusses recombination as 
a fundamental requisite for adaptation on rugged fitness 
landscapes. 

In organization science, insights into the generation of 
novelty through recombination have been generated at 
several different levels of analysis. Technological inno­
vations recombine elements of previous innovations 
(Fleming 1998, Kogut and Zander 1992). Groups, teams, 
and task forces integrate the ideas and attitudes of their 
members, and are arenas in which new ideas emerge from 
the interaction of their members. Joint ventures generate 
novelty by recombining skills and processes inherited 
from their parents. In some corporate mergers, a new en­
tity can emerge that blends elements from several for­
merly independent companies. At the industry level, tech­
nological convergence can lead to the formation of new 
organizational communities that recombine elements of 
what were formerly distinct populations. These streams 
of research provide a rich foundation for modeling or­
ganizations as complex systems that evolve through the 
recombination of agents or their schemata. 

Toward New Models in Organization Science 
The development of systems theories that led to the open 
systems revolution in organization science was fueled by 
the development of new computing technologies. Proce­
dural computer programming languages naturally accom­
modated models that linked variables together in complex 
feedback loops. Similarly, the study of complex adaptive 
systems has been facilitated by the emergence of new 
computational technologies. A technological shift toward 
distributed, decentralized computing gained momentum 
during the 1980s as local area networks diffused, and ac­
celerated dramatically as the invention of the World Wide 
Web protocol caused an explosion in Internet access dur­
ing the 1990s. Intellectual models that link individual 
adaptive agents linked together in networks of interaction 
have grown hand-in-hand with modular computing ar­
chitectures that link independent processors and small 
programs together the same way. 

Three new types of computer models have been used 
extensively to study complex adaptive systems: cellular 
automata, neural networks, and genetic algorithms. Each 
is the subject of its own large and growing literature, and 
therefore this article will not describe them in detail. Or­
ganizational scholars who are interested in complex adap­
tive systems need to understand at a high level how each 
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has been used to model complexity, because each con­
tributes ideas that can serve as building blocks for new 
approaches to modeling organizational life. 

Cellular Automata. In a cellular automaton, each 
adaptive agent occupies a position on a lattice (a cell), 
surrounded by a set of neighboring agents (see Gutowitz 
1991, for an introduction). The state of each cell depends 
on the state of those considered to be its neighbors. The 
key elements chosen by the modeler are the shape of the 
lattice (e.g., whether it is two- or three-dimensional, and 
whether cells are depicted as squares or some other reg­
ular shape), the choice of states a cell can occupy, the 
decision rule used to determine a cell's state, and the 
neighborhood that each agent observes in order to apply 
its decision rule. Lomi and Larsen (1997) built a cellular 
automata model that is a variant of John Conway's 
"Game of Life" (see Bar-Yam 1997 for a description), to 
show that the effects of density at founding on subsequent 
mortality rates are sensitive to assumptions about how the 
organizations are connected. Interestingly, of all cellular 
automata studied to date, only the "Game of Life" self­
organizes into a critical state (Bak 1996). 

Nowak and Vallacher (1998) provide an excellent 
overview of the strengths and limitations of cellular au­
tomata models for studying complex social systems. Cel­
lular automata give the researcher great flexibility in spec­
ifying decision rules, so complex interactions can be 
modeled. However, each cell is constrained to interact 
with the same number of neighbors as every other cell; 
clearly, in organizations some individuals have many 
more ties than others do. Because they impose a rigid 
geometric structure on the pattern of ties in the network, 
cellular automata are not well-suited for modeling situa­
tions where only one actor in a neighborhood has a tie to 
an actor outside the neighborhood. An individual has to 
adopt a whole set of ties that map to its location; it cannot 
mix and match from the set of ties made feasible by its 
location. Because each cell can be assigned to a separate 
program or computer processor, it is possible for each to 
have its own unique schema; in practice, however, most 
cellular automata models to date have assumed that each 
agent applies the same decision rule as all other agents. 

Neural Networks. A neural network model (also 
called a connectionist model) consists of a set of nodes 
called "neurons" that are connected to one another (see 
Anderson 1995 for an overview). As opposed to the geo­
metric pattern imposed by cellular automata, any set of 
connections can be modeled. Each node uses an equation 
specified by the modeler to determine whether it should 
be activated, based on incoming signals from other neu­
rons and its previous pattern of activation. Each connec­
tion between two nodes has a weight, influencing how 
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strongly a signal from one node enters into the activation 
equation of the other. These weights change in response 
to experience, in a fashion determined by the modeler. 
Typically, modelers train a network by mapping a set of 
independent variables to a set of neurons, and feeding the 
network observations on these independent variables 
along with associated observations on the dependent vari­
ables. By modifying the strength of the connections 
among neurons, the network evolves a set of connections 
that is able to predict the value of the dependent variable, 
given a set of values for the independent variables. 

Neural networks have been used extensively in busi­
ness and economic forecasting applications, and have 
been proposed as a basis for studying network forms of 
organizing (Heydebrand 1989). They provide an inter­
esting alternative to rule-based models for depicting 
agents' schemata. Future studies of organizations as com­
plex adaptive systems might well model them as a net­
work of partially connected, coevolving neural networks. 

Genetic Algorithms and Classifier Systems. Genetic 
algorithms have principally been employed in computer 
science and operations research to solve optimization 
problems that were once considered intractable (see 
Holland 1995 for an overview; see Bruderer and Singh 
1996 for an application to organizations). An agent is 
modeled as a set of one or more instruction strings, con­
sisting either of a rule table or an automaton. Each string 
is assigned a fitness. Each period, strings are copied in 
proportion to their observed performance, and a new set 
of strings is generated by combining subsets of these 
strings at some random crossover point. Such strings are 
employed in classifier systems, which consist of rules. 
Rules compete with one another to post messages, but a 
rule can only post a message if it is activated by other 
messages. When a rule succeeds in posting its message, 
it transfers some of its fitness to the rules that contributed 
to activating it. As a result, each rule's strength depends 
on its past usefulness to other rules and the payoffs it 
receives from them. 

Classifier systems have been used to manage bidding 
processes across a supply chain (Roy 1998). By allowing 
rules to bid and compete with one another, these models 
are able to evolve adequate solutions to problems involv­
ing very complex nonlinear dynamics. Genetic algo­
rithms have also been used to breed useful software 
programs from chunks of competing code. Their imple­
mentation of a procedure for recombining rules to gen­
erate new rules is an important idea for organizational 
scholars to consider. More problematically, this technique 
relies on assigning fitness functions to strings; assigning 
fitness functions to organizations or their components is 
less straightforward. As Morel and Ramanujam note in 
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this issue, genetic algorithms are appropriate when there 
is a known function to maximize; coevolution, in con­
trast, implies a constantly shifting definition of what an 
organization is trying to optimize. 

Cellular automata, neural networks, and classifier sys­
tems that employ genetic algorithms all contribute im­
portant concepts for modeling complex adaptive systems. 
It is doubtful, however, that any of these approaches will 
supplant standard causal modeling, as scholars come to 
grips with the nonlinear dynamics of organizations. What 
is needed is an approach that melds empirical observation 
with the computer's power to simulate the many possible 
paths through which complex networks of interacting 
agents can evolve. 

Segel (1995) draws an interesting contrast between 
models, which attempt to enhance our understanding of 
a system by representing it in terms of mathematical 
equations, and simulations, which attempt to reproduce 
through a computer program how a system behaves in a 
given set of circumstances. A modeler strives for sim­
plicity at the expense of realism, while a simulator strives 
for realism at the expense of simplicity. It seems apparent 
that simulation is an essential tool for modeling a set of 
complex, changing interactions over time. Simulation in 
organizations has made enormous strides (see Carley 
1995 for an overview), and modem object-oriented pro­
gramming methods provide a natural way to model 
agents, their schemata, and their interconnections 
(Zeggelink et al. 1996). Moss et al. (1998) describe an 
object-oriented programming language, SDML (strictly 
declarative modeling language), that represents agents as 
models of cognition within organizational structures. 
Other models such as Santa Fe's SWARM simulation 
system (profiled on the Internet at http:// 
www.santafe.edu/proj ects / swarm/) may also 
simplify the problem of modeling organizations that have 
rich interactions among their components. 

Organization science has historically advanced by 
combining theoretical with empirical research. A limita­
tion of simulations is that many equally plausible struc­
tures can lead to very different predictions, and a given 
outcome can be explained equally well by a host of sim­
ulations with very different assumptions. The power of 
simulation as a technique is its ability through many it­
erations to explore a variety of paths through which a 
system might evolve, given a structure of partially con­
nected, coevolving agents that possess changing sche­
mata. Such simulations need not be based on abstract 
specifications of how agents behave and interact; they 
may be seeded with real data from real actors. 

R. Lewin et al. (1998) suggest that modeling complex 
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adaptive systems involves identifying agent characteris­
tics, the dimensions of relationships among the agents, 
and the figures of merit that govern their coevolution. 
Qualitative field-based work can produce candidate pa­
rameters for each of these elements, they argue. Connec­
tionist models that incorporate actual data have already 
been developed (Read and Miller 1998, see V arkas­
Duong 1998 for a critique). Simulation allows us to see 
what emerges when agents whose behavior and cognitive 
structure we assess empirically interact with one another 
through a set of connections that we assess empirically, 
but that can change over time as part of the model. 

What might a future empirical study look like, that in­
troduces a new way of thinking about modelling com­
plexity? It may well try to develop and test a theory that 
tries to explain an empirical regularity observed in stan­
dard causal-modeling research. Instead of asking which 
other independent variables seem to be significantly and 
causally related to the outcome, it will ask what model of 
interacting might lead to the observed outcome in dy­
namic equilibrium, and what other outcomes would be 
predicted from such a model. 

For example, organizational scholars were to observe 
that the longer an organization has been in existence, the 
less likely it is to pioneer a radical innovation. One ap­
proach to building on this observation has been to gather 
data on what organizational characteristics seem to be 
correlated with pioneering behavior. A different approach 
might model radical innovation as the outcome of inter­
action among a variety of organizations that pursue better 
technical performance in coevolutionary competition 
with one another. The empirical data one might gather 
from an actual population would include: 

(1) Who are the agents? How many organizations 
compete in this space, and what are their salient demo­
graphic characteristics? 

(2) What are the agents' schemata? A researcher might 
use survey or observational or even archival data to model 
a set of competing cognitive structures that determine 
what innovations each agent pursues and how it reacts to 
the efforts of other agents. Each firm might be modeled 
as a set of (perhaps fuzzy) decision rules, or one might 
train a neural network to mimic each firm's response to 
a given set of inputs. 

(3) How are the agents connected? How do these con­
nections change over time? 

(4) What payoff functions do these agents pay atten­
tion to? What tradeoffs are they willing to make among 
different types of payoffs? 

(5) How do the actions of one agent affect the payoffs 
of others? What is the payoff structure of the evolutionary 
game they appear to be playing? 
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The first step of the study would be to build a model 
based on theoretical assumptions that incorporates these 
empirical data. The second step would be to demonstrate 
that the model can simulate the trajectory of innovation 
in the population observed to date. The third step would 
be to make novel predictions based on the model that 
move beyond received theory. The fourth step would be 
to make predictions about what outcomes would be ob­
served were key elements of the model to change. What 
would happen, for example, were the pattern of connec­
tions or the number of agents or the payoff structure to 
be altered significantly? A fifth step would be to build 
several competing models that are all consistent with ob­
served data, but that lead to different predictions. By ap­
plying data from the evolving population or from other 
populations, we can test the predictions of different mod­
els, and progress theoretically by discarding models 
whose predictions do not hold, perhaps synthesizing new 
models from their most successful elements. 

Such a modeling approach requires a combination of 
data that has never been collected in a single study. It also 
requires familiarity with simulation techniques, although 
the type of toolkit represented by the SDML and 
SW ARM systems promises to make sophisticated simu­
lation technology more broadly accessible. It is unlikely 
that a single investigation that captures all four key fea­
tures of complex adaptive systems will be carried out in 
the short run. Rather, complex adaptive systems thinking 
will penetrate organization science through a series of 
middle-range theories that gradually build up a new gen­
eration of models that have testable implications. The 
purpose of this special issue is to accelerate the devel­
opment of such models, and the papers it contains provide 
important conceptual foundations and research directions 
for scholars interested in coming to grips with the non­
linear dynamics of organizational life. 

New Directions in the Strategic 
Management of Organizations 
In addition to suggesting new ways to model nonlinear, 
dynamic behavior in organizations, complex adaptive 
system theory has rich implications for the strategic man­
agement of organizations. A combination of institutional 
and technological factors has created a trajectory since 
the end of World War II toward greater social connect­
edness. New technologies have expanded the geographic 
and product/market scope of many enterprises, while fac­
tors such as deregulation and global trading institutions 
have broken down old barriers that once isolated orga­
nizational populations. The environment that organiza­
tions face is characterized by many interactions among 
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organizations and institutions, creating complex, nonlin­
ear relationships between actions and outcomes. 

Such environments are hypercompetitive (D' Aveni 
1994; Illinitch et al. 1998); their nonlinearity leads both 
to unpredictable behavior and a rapid rate of change, be­
cause changes in one agent's behavior reverberate to in­
fluence others in a chain reaction. Unlike systems with 
fixed-point or cyclical equilibria, theirs is a more dynamic 
equilibrium in which actions can lead to small, medium, 
or large cascades of adjustment. For this reason, the aim 
of organizations' strategy is to evolve temporary advan­
tages more rapidly than competitors can (Brown and 
Eisenhardt 1998). As McKelvey (this issue) points out, 
complexity theory is particularly relevant for organiza­
tions facing rates of external change that exceed their in­
ternal rate change. 

In environments far from equilibrium, where cascades 
of change are constantly playing out and overlapping with 
one another, adaptation must be evolved, not planned. 
Adaptation is the passage of an organization through an 
endless series of organizational microstates that emerge 
from local interactions among agents trying to improve 
their local payoffs. The task of those responsible for the 
strategic direction of an organization is not to foresee the 
future or to implement enterprise-wide adaptation pro­
grams, because nonlinear systems react to direction in 
ways that are difficult to predict or control. Rather, such 
managers establish and modify the direction and the 
boundaries within which effective, improvised, self­
organized solutions can evolve (Meyer et al. 1998). They 
set constraints upon local actions, observe outcomes, and 
tune the system by altering the constraints, all the while 
raising or lowering the amount of energy injected into the 
dissipative structure they are managing. 

Brown and Eisenhardt' s application of complexity the­
ory to strategic management suggests that single business 
units achieve rapid evolutionary progress through im­
provisational moves based upon a few rules, responsi­
bilities, goals, and measures. Synergies among business 
units follow when every unit has a distinct role ( with none 
as central controller), and collaboration is focused on a 
few key areas. Evolution proceeds most rapidly, they ar­
gue, when senior managers effect small, cheap probes in 
a characteristic rhythm, recombining the elements of a 
portfolio of modular business units, so that novelty is de­
liberately generated without destroying the best elements 
of past experience. 

Managers seeking to design and tune such systems, 
which succeed through their superior capability to evolve 
complex adaptive behaviors, have two principal levers at 
their disposal. First, they can alter the fitness landscape 
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for local agents; second, they can reconfigure the orga­
nizational architecture within which agents adapt. In both 
cases, the strategist operates on agents indirectly, talcing 
advantage of the tendency for myriad local interactions 
to self-organize into a coherent pattern. Rather than shap­
ing the pattern that constitutes a strategy (Mintzberg and 
Waters 1982), managers shape the context within which 
it emerges (Burgelman 1991). 

By altering the fitness landscape on which individual 
agents are trying to adapt, strategists can change both the 
trajectory of emergent behavior and the diversity of be­
haviors in an organization's repertoire. As Levinthal and 
Warglien note (this issue), managing a fitness landscape 
involves much more than the design of incentive mech­
anisms. Altering the reward system is an important way 
in which managers can shape the flow of behaviors in an 
organization, and in particular, they must counteract the 
tendency of managers to favor exploiting short-term op­
portunities over exploring riskier ones that have a more 
distant and less certain payoff (March 1991). Reward sys­
tems must also overcome classic agency problems that 
arise in the course of interaction, such as compensating 
individuals for team production, encouraging agents to 
exert themselves on behalf of their principals, and over­
coming social dilemmas. In addition, however, fitness 
landscapes can be altered by operating on the context 
within which a reward system operates. 

The most direct way in which executives operate on 
the context of reward systems is by choosing the orga­
nization's domain. A firm's fitness landscape depends di­
rectly on the strategic choice of its niche, its way of mak­
ing a living. By altering the shape or location of the niche, 
executives propel their organizations into arenas that 
channel emergent behavior in novel directions. 

Because a fitness landscape results from nested coevo­
lution at several different levels (A. Lewin et al. 1999), 
executives operate upon an indirect ecological system 
within which ideas and initiatives compete by managing 
variation, selection, and retention among schemata 
(Anderson 1999). An agent's interpretation of the fitness 
landscape depends on the schemata s/he is following, and 
the nature and distribution of schemata in an organization 
is subject to managerial influence. Social cues interact 
with reward systems to help agents decide which signals 
deserve their limited attention. 

In addition, as noted above, organizational fitness is an 
ambiguous construct. Consequently, managers can high­
light different goals and measures at different times, and 
can alter the tradeoff that agents make among conflicting 
dimensions of fitness. In th1s way, they can encourage 
more exploration or more exploitation, by emphasizing 
different aspects of performance. In many organizations, 
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managers operate several different performance measure­
ment systems, and by altering the degree to which these 
systems overlap or diverge, executives can adjust the rug­
gedness of the adaptive landscape that agents face. 

In his or her role as organizational architect, the strat­
egist influences the extent of improvisation, the nature of 
collaboration, the characteristic rhythm of innovation, 
and the number and nature of experimental probes by 
changing structure and demography (Meyer et al. 1998). 
When agents are added to, deleted from, or recombined 
within a network, a coevolutionary cascade results; in dy­
namic equilibrium, some of these cascades will result in 
large-scale adaptation, allowing a continuous series of 
small changes to generate evolution in a punctuated equi­
librium. A similar pattern of adjustment can occur when 
ties between agents are made, broken, or altered in 
strength and sign. Managers of complex systems can only 
dimly foresee what specific behaviors will emerge when 
an organization's architecture is changed. Instead of re­
lying on foresight, they rely on evolution; changes that 
produce positive cascades of change are retained, while 
those that do not are altered. 

Future research in strategic management must give ex­
ecutives guidelines to follow in evolving networks of 
agents. For example, Burt's (1980) analysis of social net­
works suggests that creating structural holes is a way to 
generate more novelty and innovation. There does not yet 
exist a theory that will help managers predict even gen­
erally the type of emergent outcome that will result from 
altering the configuration of a network in a particular 
way, and crafting such a theory should be important ele­
ment of the research agenda in strategy. 

In a similar vein, managers can indirectly influence the 
emergence of adaptive behavior by altering the distribu­
tion of agents in a network. Changing the demography of 
an organization will alter the pattern of behavior that 
emerges from it (Lawrence 1997). Although a link be­
tween diversity and innovative behavior seems reason­
ably well-established, much more research will be re­
quired to help strategists think about how to guide the 
strategic evolution of an enterprise by malcing specific 
types of demographic changes. 

Conclusion 
Organization theory has not yet caught up with the so­
phisticated tools that have emerged for analyzing the be­
havior of complex adaptive systems. We are not on the 
verge of a revolution that will render a century of orga­
nization theory obsolete, but remarkable new vistas are 
opening up, thanks to the melding of the science of com­
plexity and organization theory and the increasing avail­
ability of new techniques for modeling nonlinear behav­
ior. Those who take advantage of this opportunity will 
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lead us to think in new ways about what kind of organi­
zational data to gather and what kind of models to con­
struct. They will also generate a new wave of theory in 
strategic management that focuses successfully managing 
strategic and organization change and how managers lead 
and influence the never ending journey of adaptation. 

Organization theory has historically borrowed from a 
number of parent disciplines. Because complexity theory 
has developed along a very interdisciplinary path, it may 
be that in the end, organization theory contributes as 
much as it borrows to the development of insight into the 
behavior of complex systems. Many modem organiza­
tions are complex adaptive systems par excellence, and 
we who study them should eventually lead instead of fol­
low efforts to understand the fundamental nature of non­
linear, self-organized structures. 
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