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2  Geographic Data Mining and Knowledge Discovery

1.1 INTRODUCTION

Similar to many research and application fields, geography has moved from a data-
poor and computation-poor to a data-rich and computation-rich environment. The 
scope, coverage, and volume of digital geographic datasets are growing rapidly. Public 
and private sector agencies are creating, processing, and disseminating digital data on 
land use, socioeconomic conditions, and infrastructure at very detailed levels of geo-
graphic resolution. New high spatial and spectral resolution remote sensing systems 
and other monitoring devices are gathering vast amounts of geo-referenced digital 
imagery,  video, and sound. Geographic data collection devices linked to location- 
ware technologies (LATs) such as global positioning system (GPS) receivers allow 
field researchers to collect unprecedented amounts of data. LATs linked to or embed-
ded in devices such as cell phones, in-vehicle navigation systems, and wireless Internet 
clients provide location-specific content in exchange for tracking individuals in space 
and time. Information infrastructure initiatives such as the U.S. National Spatial Data 
Infrastructure are facilitating data sharing and interoperability. Digital geographic data 
repositories on the World Wide Web are growing rapidly in both number and scope. 
The amount of data that geographic information processing systems can handle will 
continue to increase exponentially through the mid-21st century.

Traditional spatial analytical methods were developed in an era when data collec-
tion was expensive and computational power was weak. The increasing volume and 
diverse nature of digital geographic data easily overwhelm mainstream spatial anal-
ysis techniques that are oriented toward teasing scarce information from small and 
homogenous datasets. Traditional statistical methods, particularly spatial statistics, 
have high computational burdens. These techniques are confirmatory and require 
the researcher to have a priori hypotheses. Therefore, traditional spatial analytical 
techniques cannot easily discover new and unexpected patterns, trends, and relation-
ships that can be hidden deep within very large and diverse geographic datasets.

In March 1999, the National Center for Geographic Information and Analysis 
(NCGIA) — Project Varenius held a workshop on discovering geographic knowl-
edge in data-rich environments in Kirkland, Washington, USA. The workshop 
brought together a diverse group of stakeholders with interests in developing and 
applying computational techniques for exploring large, heterogeneous digital geo-
graphic datasets. Drawing on papers submitted to that workshop, in 2001 we pub-
lished Geographic Data Mining and Knowledge Discovery, a volume that brought 
together some of the cutting-edge research in the area of geographic data mining and 
geographic knowledge discovery in a data-rich environment. There has been much 
progress in geographic knowledge discovery (GKD) over the past eight years, includ-
ing the development of new techniques for geographic data warehousing (GDW), 
spatial data mining, and geo-visualization. In addition, there has been a remarkable 
rise in the collection and storage of data on spatiotemporal processes and mobile 
objects, with a consequential rise in knowledge discovery techniques for these data.

The second edition of Geographic Data Mining and Knowledge Discovery is a 
major revision of the first edition. We selected chapters from the first edition and 
asked authors for updated manuscripts that reflect changes and recent developments 
in their particular domains. We also solicited new chapters on topics that were not 
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Geographic Data Mining and Knowledge Discovery 3

covered well in the first edition but have become more prominent recently. This 
includes several new chapters on spatiotemporal and mobile objects databases, a 
topic only briefly mentioned in the 2001 edition.

This chapter introduces geographic data mining and GKD. In this chapter, we pro-
vide an overview of knowledge discovery from databases (KDD) and data mining. 
We identify why geographic data is a nontrivial special case that requires distinctive 
consideration and techniques. We also review the current state-of-the-art in GKD, 
including the existing literature and the contributions of the chapters in this volume.

1.2 KNOWLEDGE DISCOVERY AND DATA MINING

In this section, we provide a general overview of knowledge discovery and data 
mining. We begin with an overview of KDD, highlighting its general objectives and 
its relationship to the field of statistics and the general scientific process. We then 
identify the major stages of KDD processing, including data mining. We classify 
major data-mining tasks and discuss some techniques available for each task. We 
conclude this section by discussing the relationships between scientific visualization 
and KDD.

1.2.1 KNOWLEDGE DISCOVERY FROM DATABASES

Knowledge discovery from databases (KDD) is a response to the enormous volumes 
of data being collected and stored in operational and scientific databases. Continuing 
improvements in information technology (IT) and its widespread adoption for process 
monitoring and control in many domains is creating a wealth of new data. There is 
often much more information in these databases than the “shallow” information being 
extracted by traditional analytical and query techniques. KDD leverages investments 
in IT by searching for deeply hidden information that can be turned into knowledge 
for strategic decision making and answering fundamental research questions.

KDD is better known through the more popular term “data mining.” However, 
data mining is only one component (albeit a central component) of the larger KDD 
process. Data mining involves distilling data into information or facts about the 
domain described by the database. KDD is the higher-level process of obtaining 
information through data mining and distilling this information into knowledge 
(ideas and beliefs about the domain) through interpretation of information and inte-
gration with existing knowledge.

KDD is based on a belief that information is hidden in very large databases in the 
form of interesting patterns. These are nonrandom properties and relationships that 
are valid, novel, useful, and ultimately understandable. Valid means that the pattern 
is general enough to apply to new data; it is not just an anomaly of the current data. 
Novel means that the pattern is nontrivial and unexpected. Useful implies that the 
pattern should lead to some effective action, e.g., successful decision making and 
scientific investigation. Ultimately understandable means that the pattern should be 
simple and interpretable by humans (Fayyad, Piatetsky-Shapiro and Smyth 1996).

KDD is also based on the belief that traditional database queries and statistical 
methods cannot reveal interesting patterns in very large databases, largely due to the 
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4  Geographic Data Mining and Knowledge Discovery

type of data that increasingly comprise enterprise databases and the novelty of the 
patterns sought in KDD.

KDD goes beyond the traditional domain of statistics to accommodate data not 
normally amenable to statistical analysis. Statistics usually involves a small and clean 
(noiseless) numeric database scientifically sampled from a large population with spe-
cific questions in mind. Many statistical models require strict assumptions (such as 
independence, stationarity of underlying processes, and normality). In contrast, the 
data being collected and stored in many enterprise databases are noisy, nonnumeric, 
and possibly incomplete. These data are also collected in an open-ended manner 
without specific questions in mind (Hand 1998). KDD encompasses principles and 
techniques from statistics, machine learning, pattern recognition, numeric search, 
and scientific visualization to accommodate the new data types and data volumes 
being generated through information technologies.

KDD is more strongly inductive than traditional statistical analysis. The gen-
eralization process of statistics is embedded within the broader deductive process 
of science. Statistical models are confirmatory, requiring the analyst to specify a 
model a priori based on some theory, test these hypotheses, and perhaps revise 
the theory depending on the results. In contrast, the deeply hidden, interesting 
patterns being sought in a KDD process are (by definition) difficult or impos-
sible to specify a priori, at least with any reasonable degree of completeness. 
KDD is more concerned about prompting investigators to formulate new predic-
tions and hypotheses from data as opposed to testing deductions from theories 
through a sub-process of induction from a scientific database (Elder and Pregibon 
1996; Hand 1998). A guideline is that if the information being sought can only be 
vaguely described in advance, KDD is more appropriate than statistics (Adriaans 
and Zantinge 1996).

KDD more naturally fits in the initial stage of the deductive process when the 
researcher forms or modifies theory based on ordered facts and observations from 
the real world. In this sense, KDD is to information space as microscopes, remote 
sensing, and telescopes are to atomic, geographic, and astronomical spaces, respec-
tively. KDD is a tool for exploring domains that are too difficult to perceive with 
unaided human abilities. For searching through a large information wilderness, the 
powerful but focused laser beams of statistics cannot compete with the broad but 
diffuse floodlights of KDD. However, floodlights can cast shadows and KDD cannot 
compete with statistics in confirmatory power once the pattern is discovered.

1.2.2 DATA WAREHOUSING

An infrastructure that often underlies the KDD process is the data warehouse (DW). 
A DW is a repository that integrates data from one or more source databases. The 
DW phenomenon results from several technological and economic trends, including 
the decreasing cost of data storage and data processing, and the increasing value of 
information in business, government, and scientific environments. A DW usually 
exists to support strategic and scientific decision making based on integrated, shared 
information, although DWs are also used to save legacy data for liability and other 
purposes (see Jarke et al. 2000).
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Geographic Data Mining and Knowledge Discovery 5

The data in a DW are usually read-only historical copies of the operational 
databases in an enterprise, sometimes in summary form. Consequently, a DW is 
often several orders of magnitude larger than an operational database (Chaudhuri 
and Dayal 1997). Rather than just a very large database management system, a DW 
embodies database design principles very different from operational databases.

Operational database management systems are designed to support transactional 
data processing, that is, data entry, retrieval, and updating. Design principles for 
transactional database systems attempt to create a database that is internally consis-
tent and recoverable (i.e., can be “rolled-back” to the last known internally consis-
tent state in the event of an error or disruption). These objectives must be met in an 
environment where multiple users are retrieving and updating data. For example, the 
normalization process in relational database design decomposes large, “flat” rela-
tions along functional dependencies to create smaller, parsimonious relations that 
logically store a particular item a minimal number of times (ideally, only once; see 
Silberschatz et al. 1997). Since data are stored a minimal number of times, there is 
a minimal possibility of two data items about the same real-world entity disagreeing 
(e.g., if only one item is updated due to user error or an ill-timed system crash).

In contrast to transactional database design, good DW design maximizes the effi-
ciency of analytical data processing or data examination for decision making. Since 
the DW contains read-only copies and summaries of the historical operational data-
bases, consistency and recoverability in a multiuser transactional environment are not 
issues. The database design principles that maximize analytical efficiency are con-
trary to those that maximize transactional stability. Acceptable response times when 
repeatedly retrieving large quantities of data items for analysis require the database 
to be nonnormalized and connected; examples include the “star” and “snowflake” 
logical DW schemas (see Chaudhuri and Dayal 1997). The DW is in a sense a buffer 
between transactional and analytical data processing, allowing efficient analytical 
data processing without corrupting the source databases (Jarke et al. 2000).

In addition to data mining, a DW often supports online analytical processing 
(OLAP) tools. OLAP tools provide multidimensional summary views of the data 
in a DW. OLAP tools allow the user to manipulate these views and explore the data 
underlying the summarized views. Standard OLAP tools include roll-up (increasing 
the level of aggregation), drill-down (decreasing the level of aggregation), slice and 
dice (selection and projection), and pivot (re-orientation of the multidimensional data 
view) (Chaudhuri and Dayal 1997). OLAP tools are in a sense types of “super-que-
ries”: more powerful than standard query language such as SQL but shallower than 
data-mining techniques because they do not reveal hidden patterns. Nevertheless, 
OLAP tools can be an important part of the KDD process. For example, OLAP tools 
can allow the analyst to achieve a synoptic view of the DW that can help specify and 
direct the application of data-mining techniques (Adriaans and Zantinge 1996).

A powerful and commonly applied OLAP tool for multidimensional data sum-
mary is the data cube. Given a particular measure (e.g., “sales”) and some dimen-
sions of interest (e.g., “item,” “store,” “week”), a data cube is an operator that 
returns the power set of all possible aggregations of the measure with respect to the 
dimensions of interest. These include aggregations over zero dimension (e.g., “total 
sales”), one dimension (e.g., “total sales by item,” “total sales by store,” “total sales  Co
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6  Geographic Data Mining and Knowledge Discovery

per week”), two dimensions (e.g., “total sales by item and store”) and so on, up to 
N dimensions. The data cube is an N-dimensional generalization of the more com-
monly known SQL aggregation functions and “Group-By” operator. However, the 
analogous SQL query only generates the zero and one-dimensional aggregations; 
the data cube operator generates these and the higher dimensional aggregations all 
at once (Gray et al. 1997).

The power set of aggregations over selected dimensions is called a “data cube” 
because the logical arrangement of aggregations can be viewed as a hypercube in 
an N-dimensional information space (see Gray et al. 1997, Figure 2). The data cube 
can be pre-computed and stored in its entirety, computed “on-the-fly” only when 
requested, or partially pre-computed and stored (see Harinarayan, Rajaman and 
Ullman 1996). The data cube can support standard OLAP operations including roll-
up, drill-down, slice, dice, and pivot on measures computed by different aggregation 
operators, such as max, min, average, top-10, variance, and so on.

1.2.3 THE KDD PROCESS AND DATA MINING

The KDD process usually consists of several steps, namely, data selection, data pre-
processing, data enrichment, data reduction and projection, data mining, and pattern 
interpretation and reporting. These steps may not necessarily be executed in linear 
order. Stages may be skipped or revisited. Ideally, KDD should be a human-centered 
process based on the available data, the desired knowledge, and the intermediate 
results obtained during the process (see Adriaans and Zantinge 1996; Brachman and 
Anand 1996; Fayyad, Piatetsky-Shapiro and Smyth 1996; Han and Kamber 2006; 
Matheus, Chan and Piatetsky-Shapiro 1993).

Data selection refers to determining a subset of the records or variables in a 
database for knowledge discovery. Particular records or attributes are chosen as foci 
for concentrating the data-mining activities. Automated data reduction or “focusing” 
techniques are also available (see Barbara et al. 1997, Reinartz 1999). Data pre-pro-
cessing involves “cleaning” the selected data to remove noise, eliminating duplicate 
records, and determining strategies for handling missing data fields and domain vio-
lations. The pre-processing step may also include data enrichment through combin-
ing the selected data with other, external data (e.g., census data, market data). Data 
reduction and projection concerns both dimensionality and numerosity reductions 
to further reduce the number of attributes (or tuples) or transformations to determine 
equivalent but more efficient representations of the information space. Smaller, less 
redundant and more efficient representations enhance the effectiveness of the data-
mining stage that attempts to uncover the information (interesting patterns) in these 
representations. The interpretation and reporting stage involves evaluating, under-
standing, and communicating the information discovered in the data-mining stage.

Data mining refers to the application of low-level functions for revealing hidden 
information in a database (Klösgen and Żytkow 1996). The type of knowledge to be 
mined determines the data-mining function to be applied (Han and Kamber 2006). 
Table 1.1 provides a possible classification of data-mining tasks and techniques. See 
Matheus, Chan and Piatetsky-Shapiro (1993) and Fayyad, Piatetsky-Shapiro and Co
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Geographic Data Mining and Knowledge Discovery 7

Smyth (1996), as well as several of the chapters in this current volume for other 
overviews and classifications of data-mining techniques.

Segmentation or clustering involves partitioning a selected set of data into mean-
ingful groupings or classes. It usually applies cluster analysis algorithms to examine 
the relationships between data items and determining a finite set of implicit classes 
so that the intraclass similarity is maximized and interclass similarity is minimized. 
The commonly used data-mining technique of cluster analysis determines a set of 
classes and assignments to these classes based on the relative proximity of data items 
in the information space. Cluster analysis methods for data mining must accommo-
date the large data volumes and high dimensionalities of interest in data mining; this 
usually requires statistical approximation or heuristics (see Farnstrom, Lewis and 
Elkan 2000). Bayesian classification methods, such as AutoClass, determine classes 
and a set of weights or class membership probabilities for data items (see Cheesman 
and Stutz 1996).

Classification refers to finding rules or methods to assign data items into pre-
existing classes. Many classification methods have been developed over many years 
of research in statistics, pattern recognition, machine learning, and data mining, 
including decision tree induction, naïve Bayesian classification, neural networks, 
support vector machines, and so on. Decision or classification trees are hierarchi-
cal rule sets that generate an assignment for each data item with respect to a set of 
known classes. Entropy-based methods such as ID3 and C4.5 (Quinlan 1986, 1992) 

TABLE 1.1
Data-Mining Tasks and Techniques

Knowledge Type Description Techniques

Segmentation or clustering Determining a finite set of implicit 

groups that describe the data. 

Cluster analysis

Classification Predict the class label that a set of 

data belongs to based on some 

training datasets

Bayesian classification

Decision tree induction

Artificial neural networks

Support vector machine (SVM)

Association Finding relationships among 

itemsets or association/correlation 

rules, or predict the value of some 

attribute based on the value of 

other attributes 

Association rules

Bayesian networks

Deviations Finding data items that exhibit 

unusual deviations from 

expectations 

Clustering and other data-mining 

methods

Outlier detection

Evolution analysis

Trends and regression 

analysis

Lines and curves summarizing the 

database, often over time

Regression

Sequential pattern extraction

Generalizations Compact descriptions of the data Summary rules

Attribute-oriented induction
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8  Geographic Data Mining and Knowledge Discovery

derive these classification rules from training examples. Statistical methods include 
the chi-square automatic interaction detector (CHAID) (Kass 1980) and the classi-
fication and regression tree (CART) method (Breiman et al. 1984). Artificial neural 
networks (ANNs) can be used as nonlinear clustering and classification techniques. 
Unsupervised ANNs such as Kohonen Maps are a type of neural clustering where 
weighted connectivity after training reflects proximity in information space of the 
input data (see Flexer 1999). Supervised ANNs such as the well-known feed forward/
back propagation architecture require supervised training to determine the appropri-
ate weights (response function) to assign data items into known classes.

Associations are rules that predict the object relationships as well as the value 
of some attribute based on the value of other attributes (Ester, Kriegel and Sander 
1997). Bayesian networks are graphical models that maintain probabilistic depen-
dency relationships among a set of variables. These networks encode a set of con-
ditional probabilities as directed acyclic networks with nodes representing variables 
and arcs extending from cause to effect. We can infer these conditional probabilities 
from a database using several statistical or computational methods depending on the 
nature of the data (see Buntine 1996; Heckerman 1997). Association rules are a par-
ticular type of dependency relationship. An association rule is an expression X Y
(c%, r%) where X and Y are disjoint sets of items from a database, c% is the confi-
dence and r% is the support. Confidence is the proportion of database transactions 
containing X that also contain Y; in other words, the conditional probability P Y X( | ) .  
Support is proportion of database transactions that contain X and Y, i.e., the union of 
X and Y, P X Y( )  (see Hipp, Güntzer and Nakhaeizadeh 2000). Mining associa-
tion rules is a difficult problem since the number of potential rules is exponential 
with respect to the number of data items. Algorithms for mining association rules 
typically use breadth-first or depth-first search with branching rules based on mini-
mum confidence or support thresholds (see Agrawal et al. 1996; Hipp, Güntzer and 
Nakhaeizadeh 2000).

Deviations are data items that exhibit unexpected deviations or differences from 
some norm. These cases are either errors that should be corrected/ignored or rep-
resent unusual cases that are worthy of additional investigation. Outliers are often 
a byproduct of other data-mining methods, particularly cluster analysis. However, 
rather than treating these cases as “noise,” special-purpose outlier detection meth-
ods search for these unusual cases as signals conveying valuable information (see 
Breuing et al. 1999).

Trends are lines and curves fitted to the data, including linear and logistic regres-
sion analysis, that are very fast and easy to estimate. These methods are often com-
bined with filtering techniques such as stepwise regression. Although the data often 
violate the stringent regression assumptions, violations are less critical if the esti-
mated model is used for prediction rather than explanation (i.e., estimated parame-
ters are not used to explain the phenomenon). Sequential pattern extraction explores 
time series data looking for temporal correlations or pre-specified patterns (such as 
curve shapes) in a single temporal data series (see Agrawal and Srikant 1995; Berndt 
and Clifford 1996).

Generalization and characterization are compact descriptions of the database. 
As the name implies, summary rules are a relatively small set of logical statements Co
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Geographic Data Mining and Knowledge Discovery 9

that condense the information in the database. The previously discussed classifica-
tion and association rules are specific types of summary rules. Another type is a 
characteristic rule; this is an assertion that data items belonging to a specified con-
cept have stated properties, where “concept” is some state or idea generalized from 
particular instances (Klösgen and Żytkow 1996). An example is “all professors in 
the applied sciences have high salaries.” In this example, “professors” and “applied 
sciences” are high-level concepts (as opposed to low-level measured attributes such 
as “assistant professor” and “computer science”) and “high salaries” is the asserted 
property (see Han, Cai and Cercone 1993).

A powerful method for finding many types of summary rules is attribute-ori-
ented induction (also known as generalization-based mining). This strategy per-
forms hierarchical aggregation of data attributes, compressing data into increasingly 
generalized relations. Data-mining techniques can be applied at each level to extract 
features or patterns at that level of generalization (Han and Fu 1996). Background 
knowledge in the form of a concept hierarchy provides the logical map for aggregat-
ing data attributes. A concept hierarchy is a sequence of mappings from low-level 
to high-level concepts. It is often expressed as a tree whose leaves correspond to 
measured attributes in the database with the root representing the null descriptor 
(“any”). Concept hierarchies can be derived from experts or from data cardinality 
analysis (Han and Fu 1996).

A potential problem that can arise in a data-mining application is the large num-
ber of patterns generated. Typically, only a small proportion of these patterns will 
encapsulate interesting knowledge. The vast majority may be trivial or irrelevant. A 
data-mining engine should present only those patterns that are interesting to particu-
lar users. Interestingness measures are quantitative techniques that separate inter-
esting patterns from trivial ones by assessing the simplicity, certainty, utility, and 
novelty of the generated patterns (Silberschatz and Tuzhilin 1996; Tan, Kumar and 
Srivastava 2002). There are many interestingness measures in the literature; see Han 
and Kamber (2006) for an overview.

1.2.4 VISUALIZATION AND KNOWLEDGE DISCOVERY

KDD is a complex process. The mining metaphor is appropriate — information is 
buried deeply in a database and extracting it requires skilled application of an inten-
sive and complex suite of extraction and processing tools. Selection, pre-processing, 
mining, and reporting techniques must be applied in an intelligent and thoughtful 
manner based on intermediate results and background knowledge. Despite attempts 
at quantifying concepts such as interestingness, the KDD process is difficult to auto-
mate. KDD requires a high-level, most likely human, intelligence at its center (see 
Brachman and Anand 1996).

Visualization is a powerful strategy for integrating high-level human intelligence 
and knowledge into the KDD process. The human visual system is extremely effec-
tive at recognizing patterns, trends, and anomalies. The visual acuity and pattern 
spotting capabilities of humans can be exploited in many stages of the KDD pro-
cess, including OLAP, query formulation, technique selection, and interpretation of 
results. These capabilities have yet to be surpassed by machine-based approaches.
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10  Geographic Data Mining and Knowledge Discovery

Keim and Kriegel (1994) and Lee and Ong (1996) describe software systems 
that incorporate visualization techniques for supporting database querying and data 
mining. Keim and Kriegel (1994) use visualization to support simple and complex 
query specification, OLAP, and querying from multiple independent databases. Lee 
and Ong’s (1996) WinViz software uses multidimensional visualization techniques 
to support OLAP, query formulation, and the interpretation of results from unsuper-
vised (clustering) and supervised (decision tree) segmentation techniques. Fayyad, 
Grinstein and Wierse (2001) provide a good overview of visualization methods for 
data mining.

1.3 GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY

This section of the chapter describes a very important special case of KDD, namely, 
GKD. We will first discuss why GKD is an important special case that requires 
careful consideration and specialized tools. We will then discuss GDW and online 
geographic data repositories, the latter an increasingly important source of digital 
geo-referenced data and imagery. We then discuss geographic data-mining tech-
niques and the relationships between GKD and geographic visualization (GVis), an 
increasingly active research domain integrating scientific visualization and cartog-
raphy. We follow this with discussions of current GKD techniques and applications 
and research frontiers, highlighting the contributions of this current volume.

1.3.1 WHY GEOGRAPHIC KNOWLEDGE DISCOVERY?

1.3.1.1 Geographic Information in Knowledge Discovery
The digital geographic data explosion is not much different from similar revolutions 
in marketing, biology, and astronomy. Is there anything special about geographic 
data that requires unique tools and provides unique research challenges? In this sec-
tion, we identify and discuss some of the unique properties of geographic data and 
challenges in GKD.

Geographic measurement frameworks. While many information domains of 
interest in KDD are high dimensional, these dimensions are relatively independent. 
Geographic information is not only high dimensional but also has the property that 
up to four dimensions of the information space are interrelated and provide the mea-
surement framework for all other dimensions. Formal and computational represen-
tations of geographic information require the adoption of an implied topological 
and geometric measurement framework. This framework affects measurement of 

the geographic attributes and consequently the patterns that can be extracted (see 
Beguin and Thisse 1979; Miller and Wentz 2003).

The most common framework is the topology and geometry consistent with 
Euclidean distance. Euclidean space fits in well with our experienced reality and 
results in maps and cartographic displays that are useful for navigation. However, 
geographic phenomena often display properties that are consistent with other topolo-
gies and geometries. For example, travel time relationships in an urban area usually 
violate the symmetry and triangular inequality conditions for Euclidean and other Co
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Geographic Data Mining and Knowledge Discovery 11

distance metrics. Therefore, seeking patterns and trends in transportation systems 
(such as congestion propagation over space and time) benefits from projecting the 
data into an information space whose spatial dimensions are nonmetric. In addition, 
disease patterns in space and time often behave according to topologies and geome-
tries other than Euclidean (see Cliff and Haggett 1998; Miller and Wentz 2003). The 
useful information implicit in the geographic measurement framework is ignored in 
many induction and machine learning tools (Gahegan 2000a).

An extensive toolkit of analytical cartographic techniques is available for estimat-
ing appropriate distance measures and projecting geographic information into that 
measurement framework (see Cliff and Haggett 1998; Gatrell 1983; Müller 1982; 
Tobler 1994). The challenge is to incorporate scalable versions of these tools into 
GKD. Cartographic transformations can serve a similar role in GKD as data reduc-
tion and projection in KDD, i.e., determining effective representations that maxi-
mize the likelihood of discovering interesting geographic patterns in a reasonable 
amount of time.

Spatial dependency and heterogeneity. Measured geographic attributes usu-
ally exhibit the properties of spatial dependency and spatial heterogeneity. Spatial 
dependency is the tendency of attributes at some locations in space to be related.* 
These locations are usually proximal in Euclidean space. However, direction, con-
nectivity, and other geographic attributes (e.g., terrain, land cover) can also affect 
spatial dependency (see Miller and Wentz 2003; Rosenberg 2000). Spatial depen-
dency is similar to but more complex than dependency in other domains (e.g., serial 
autocorrelation in time series data).

Spatial heterogeneity refers to the nonstationarity of most geographic processes. 
An intrinsic degree of uniqueness at all geographic locations means that most geo-
graphic processes vary by location. Consequently, global parameters estimated from 
a geographic database do not describe well the geographic phenomenon at any par-
ticular location. This is often manifested as apparent parameter drift across space 
when the model is re-estimated for different geographic subsets.

Spatial dependency and spatial heterogeneity have historically been regarded as 
nuisances confounding standard statistical techniques that typically require inde-
pendence and stationarity assumptions. However, these can also be valuable sources 
of information about the geographic phenomena under investigation. Increasing 
availability of digital cartographic structures and geoprocessing capabilities has 
led to many recent breakthroughs in measuring and capturing these properties (see 
Fotheringham and Rogerson 1993).

Traditional methods for measuring spatial dependency include tests such as 
Moran’s I or Geary’s C. The recognition that spatial dependency is also subject to 
spatial heterogeneity effects has led to the development of local indicators of spa-
tial analysis (LISA) statistics that disaggregate spatial dependency measures by  

* In spatial analysis, this meaning of spatial dependency is more restrictive than its meaning in the GKD 
literature. Spatial dependency in GKD is a rule that has a spatial predicate in either the precedent or 

antecedent. We will use the term “spatial dependency” for both cases with the exact meaning apparent 
from the context. This should not be too confusing since the GKD concept is a generalization of the 
concept in spatial analysis.Co
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12  Geographic Data Mining and Knowledge Discovery

location. Examples include the Getis and Ord G statistic and local versions of the I 
and C statistics (see Anselin 1995; Getis and Ord 1992, 1996).

One of the problems in measuring spatial dependency in very large datasets is 
the computational complexity of spatial dependency measures and tests. In the worst 
case, spatial autocorrelation statistics are approximately O n( )2  in complexity, since 
n n( )1 calculations are required to measure spatial dependency in a database with 
n items (although in practice we can often limit the measurement to local spatial 
regions). Scalable analytical methods are emerging for estimating and incorporat-
ing these dependency structures into spatial models. Pace and Zou (2000) report 
an O n n( log( ))  procedure for calculating a closed form maximum likelihood esti-
mator of nearest neighbor spatial dependency. Another complementary strategy is 
to exploit parallel computing architectures and cyber-infrastructure. Fortunately, 
many spatial analytic techniques can be decomposed into parallel and distributed 
computations due to either task parallelism in the calculations or parallelism in the 
spatial data (see Armstrong and Marciano 1995; Armstrong, Pavlik and Marciano 
1994; Densham and Armstrong 1998; Ding and Densham 1996; Griffith 1990; Guan, 
Zhang and Clarke 2006).

Spatial analysts have recognized for quite some time that the regression model is 
misspecified and parameter estimates are biased if spatial dependency effects are not 
captured. Methods are available for capturing these effects in the structural compo-
nents, error terms, or both (see Anselin 1993; Bivand 1984). Regression parameter 
drift across space has also been long recognized. Geographically weighted regression 
uses location-based kernel density estimation to estimate location-specific regres-
sion parameters (see Brunsdon, Fotheringham and Charlton 1996; Fotheringham, 
Charlton and Brunsdon 1997).

The complexity of spatiotemporal objects and rules. Spatiotemporal objects 
and relationships tend to be more complex than the objects and relationships in non-
geographic databases. Data objects in nongeographic databases can be meaningfully 
represented as points in information space. Size, shape, and boundary properties of 
geographic objects often affect geographic processes, sometimes due to measure-
ment artifacts (e.g., recording flow only when it crosses some geographic bound-
ary). Relationships such as distance, direction, and connectivity are more complex 
with dimensional objects (see Egenhofer and Herring 1994; Okabe and Miller 1996; 
Peuquet and Ci-Xiang 1987). Transformations among these objects over time are 
complex but information bearing (Hornsby and Egenhofer 2000). Developing scal-
able tools for extracting spatiotemporal rules from collections of diverse geographic 
objects is a major GKD challenge.

In their update of Chapter 2 from the first edition of this book, Roddick and Lees 
discuss the types and properties of spatiotemporal rules that can describe geographic 
phenomena. In addition to spatiotemporal analogs of generalization, association, and 
segmentation rules, there are evolutionary rules that describe changes in spatial enti-
ties over time. They also note that the scales and granularities for measuring time 
in geography can be complex, reducing the effectiveness of simply “dimensioning 
up” geographic space to include time. Roddick and Lees suggest that geographic 
phenomena are so complex that GKD may require meta-mining, that is, mining large 
rule sets that have been mined from data to seek more understandable information.Co
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Geographic Data Mining and Knowledge Discovery 13

Diverse data types. The range of digital geographic data also presents unique 
challenges. One aspect of the digital geographic information revolution is that geo-
graphic databases are moving beyond the well-structured vector and raster formats. 
Digital geographic databases and repositories increasingly contain ill-structured 
data such as imagery and geo-referenced multimedia (see Câmara and Raper 1999). 
Discovering geographic knowledge from geo-referenced multimedia data is a more 
complex sibling to the problem of knowledge discovery from multimedia databases 
and repositories (see Petrushin and Khan 2006).

1.3.1.2 Geographic Knowledge Discovery  
in Geographic Information Science

There are unique needs and challenges for building GKD into geographic informa-
tion systems (GIS). Most GIS databases are “dumb.” They are at best a very simple 
representation of geographic knowledge at the level of geometric, topological, and 
measurement constraints. Knowledge-based GIS is an attempt to capture high-level 
geographic knowledge by storing basic geographic facts and geographic rules for 
deducing conclusions from these facts (see Srinivasan and Richards 1993; Yuan 
1997). The semantic web and semantic geospatial web attempt to make information 
understandable to computers to support interoperability, findability, and usability 
(Bishr 2007; Egenhofer 2002).

GKD is a potentially rich source of geographic facts. A research challenge is build-
ing discovered geographic knowledge into geographic databases and models to sup-
port information retrieval, interoperability, spatial analysis, and additional knowledge 
discovery. This is critical; otherwise, the geographic knowledge obtained from the 
GKD process may be lost to the broader scientific and problem-solving processes.

1.3.1.3 Geographic Knowledge Discovery in Geographic Research
Geographic information has always been the central commodity of geographic 
research. Throughout much of its history, the field of geography has operated in a 
data-poor environment. Geographic information was difficult to capture, store, and 
integrate. Most revolutions in geographic research have been fueled by a technologi-
cal advancement for geographic data capture, referencing, and handling, including 
the map, accurate clocks, satellites, GPS, and GIS. The current explosion of digital 
geographic and geo-referenced data is the most dramatic shift in the information 
environment for geographic research in history.

Despite the promises of GKD in geographic research, there are some cautions. 
In Chapter 2, Roddick and Lees note that KDD and data-mining tools were mostly 
developed for applications such as marketing where the standard of knowledge is 
“what works” rather than “what is authoritative.” The question is how to use GKD as 
part of a defensible and replicable scientific process. As discussed previously in this 
chapter, knowledge discovery fits most naturally into the initial stages of hypothesis 
formulation. Roddick and Lees also suggest a strategy where data mining is used as 
a tool for gathering evidences that strengthen or refute the null hypotheses consistent 
with a conceptual model. These null hypotheses are kinds of focusing techniques that 
constrain the search space in the GKD process. The results will be more acceptable Co
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14  Geographic Data Mining and Knowledge Discovery

to the scientific community since the likelihood of accepting spurious patterns is 
reduced.

1.3.2 GEOGRAPHIC DATA WAREHOUSING

A change since the publication of the first edition of this book in 2001 is the dramatic 
rise of the geographic information market, particular with respect to web-mapping 
services and mobile applications. This has generated a consequent heightened interest  
in GDW.

A GDW involves complexities that are unique to standard DWs. First is the sheer 
size. GDWs are potentially much larger than comparable nongeographic DWs. 
Consequently, there are stricter requirements for scalability. Multidimensional GDW 
design is more difficult because the spatial dimension can be measured using nongeo-
metric, nongeometric generalized from geometric, and fully geometric scales. Some 
of the geographic data can be ill structured, for example remotely sensed imagery 
and other graphics. OLAP tools such as roll-up and drill-down require aggregation 
of spatial objects and summarizing spatial properties. Spatial data interoperability 
is critical and particularly challenging because geographic data definitions in legacy 
databases can vary widely. Metadata management is more complex, particularly 
with respect to aggregated and fused spatial objects.

In Chapter 3, also an update from the first edition, Bédard and Han provide an 
overview of fundamental concepts underlying DW and GDW. After discussing key 
concepts of nonspatial data warehousing, they review the particularities of GDW, 
which are typically spatiotemporal. They also identify frontiers in GDW research 
and development.

A spatial data cube is the GDW analog to the data cube tool for computing and 
storing all possible aggregations of some measure in OLAP. The spatial data cube 
must include standard attribute summaries as well as pointers to spatial objects at 
varying levels of aggregation. Aggregating spatial objects is nontrivial and often 
requires background domain knowledge in the form of a geographic concept hierar-
chy. Strategies for selectively pre-computing measures in the spatial data cube include 
none, pre-computing rough approximations (e.g., based on minimum bounding rect-
angles), and selective pre-computation (see Han, Stefanovic and Koperski 2000).

In Chapter 4, Lu, Boedihardjo, and Shekhar update a discussion of the map cube 
from the first edition. The map cube extends the data cube concept to GDW. The 
map cube operator takes as arguments a base map, associated data files, a geographic 
aggregation hierarchy, and a set of cartographic preferences. The operator gener-
ates an album of maps corresponding to the power set of all possible spatial and 
nonspatial aggregations. The map collection can be browsed using OLAP tools such 
as roll-up, drill-down, and pivot using the geographic aggregation hierarchy. They 
illustrate the map cube through an application to highway traffic data.

GDW incorporates data from multiple sources often collected at different times 
and using different techniques. An important concern is the quality or the reliability 
of the data used for GKD. While error and uncertainty in geographic information 
have been long-standing concerns in the GIScience community, efforts to address Co
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Geographic Data Mining and Knowledge Discovery 15

these issues have increased substantially since the publication of the first edition of 
this book in 2001 (Goodchild 2004).

Chapter 5 by Gervais, Bédard, Levesque, Bernier, and DeVillers is a new contri-
bution to the second edition that discusses data quality issues in GKD. The authors 
identify major concepts regarding quality and risk management with respect to GDW 
and spatial OLAP. They discuss possible management mechanisms to improve the 
prevention of inappropriate usages of data. Using this as a foundation, Chapter 5 
presents a pragmatic approach of quality and risk management to be applied dur-
ing the various stages of a spatial data cube design and development. This approach 
manages the potential risks one may discover during this development process.

1.3.3 GEOGRAPHIC DATA MINING

Many of the traditional data-mining tasks discussed previously in this chapter have 
analogous tasks in the geographic data-mining domain. See Ester, Kriegel and 
Sander (1997) and Han and Kamber (2006) for overviews. Also, see Roddick and 
Spiliopoulou (1999) for a useful bibliography of spatiotemporal data-mining research. 
The volume of geographic data combined with the complexity of spatial data access 
and spatial analytical operations implies that scalability is particularly critical.

1.3.3.1 Spatial Classification and Capturing Spatial Dependency
Spatial classification builds up classification models based on a relevant set of attri-
butes and attribute values that determine an effective mapping of spatial objects into 
predefined target classes. Ester, Kriegel and Sander (1997) present a learning algo-
rithm based on ID3 for generating spatial classification rules based on the properties 
of each spatial object as well as spatial dependency with its neighbors. The user pro-
vides a maximum spatial search length for examining spatial dependency relations 
with each object’s neighbors. Adding a rule to the tree requires meeting a minimum 
information gain threshold.

Geographic data mining involves the application of computational tools to reveal 
interesting patterns in objects and events distributed in geographic space and across 
time. These patterns may involve the spatial properties of individual objects and 
events (e.g., shape, extent) and spatiotemporal relationships among objects and events 
in addition to the nonspatial attributes of interest in traditional data mining. As noted 
above, ignoring spatial dependency and spatial heterogeneity effects in geographic 
data can result in misspecified models and erroneous conclusions. It also ignores a 
rich source of potential information.

In Chapter 6, also an updated chapter from the first edition, Shekhar, Vatsavai and 
Chawla discuss the effects of spatial dependency in spatial classification and predic-
tion techniques. They discuss and compare the aspatial techniques of logistic regres-
sion and Bayesian classification with the spatial techniques of spatial autoregression 
and Markov random fields. Theoretical and experimental results suggest that the 
spatial techniques outperform the traditional methods with respect to accuracy and 
handling “salt and pepper” noise in the data.

Difficulties in accounting for spatial dependency in geographic data mining 
include identifying the spatial dependency structure, the potential combinatorial Co
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16  Geographic Data Mining and Knowledge Discovery

explosion in the size of these structures and scale-dependency of many dependency 
measures. Further research is required along all of these frontiers. As noted above, 
researchers report promising results with parallel implementations of the Getis-Ord 
G statistic. Continued work on implementations of spatial analytical techniques and 
spatial data-mining tools that exploit parallel and cyber infrastructure environments 
can complement recent work on parallel processing in standard data mining (see 
Zaki and Ho 2000).

1.3.3.2 Spatial Segmentation and Clustering
Spatial clustering groups spatial objects such that objects in the same group are sim-
ilar and objects in different groups are unlike each other. This generates a small set 
of implicit classes that describe the data. Clustering can be based on combinations 
of nonspatial attributes, spatial attributes (e.g., shape), and proximity of the objects 
or events in space, time, and space–time. Spatial clustering has been a very active 
research area in both the spatial analytic and computer science literatures. Research 
on the spatial analytic side has focused on theoretical conditions for appropriate clus-
tering in space–time (see O’Kelly 1994; Murray and Estivill-Castro 1998). Research 
on the computer science side has resulted in several scalable algorithms for clus-
tering very large spatial datasets and methods for finding proximity relationships 
between clusters and spatial features (Knorr and Ng 1996; Ng and Han 2002).

In Chapter 7, Han, Lee, and Kamber update a review of major spatial cluster-
ing methods recently developed in the data-mining literature. The first part of their  
chapter discusses spatial clustering methods. They classify spatial clustering methods  
into four categories, namely, partitioning, hierarchical, density-based, and grid-
based. Although traditional partitioning methods such as k-means and k-medoids 
are not scalable, scalable versions of these tools are available (also see Ng and Han 
2002). Hierarchical methods group objects into a tree-like structure that progres-
sively reduces the search space. Density-based methods can find arbitrarily shaped 
clusters by growing from a seed as long as the density in its neighborhood exceeds 
certain thresholds. Grid-based methods divide the information spaces into a finite 
number of grid cells and cluster objects based on this structure.

The second part of Chapter 7 discusses clustering techniques for trajectory data, 
that is, data collected on phenomena that changes geographic location frequently with 
respect to time. As noted above, these data have become more prevalent since the 
publication of the first edition of this book; this section of the chapter is new material 
relative to the first edition. Although clustering techniques for trajectory data are not 
as well developed as purely spatial clustering techniques, there are two major types 

based on whether they cluster whole trajectories or can discover sub-trajectory clusters. 
Probabilistic methods use a regression mixture model to cluster entire trajectories, 
while partition-and-group methods can discover clusters involving sub-trajectories.

Closely related to clustering techniques are medoid queries. A medoid query selects 
points in a dataset (known as medoids) such that the average Euclidean distance 
between the remaining points and their closest medoid is minimized. The resulting 
assignments of points to medoids are clusters of the original spatial data, with the 
medoids being a compact description of each cluster. Medoids also can be interpreted Co
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Geographic Data Mining and Knowledge Discovery 17

as facility locations in some problem contexts (see Murray and Estivill-Castro 1998). 
Mouratidis, Papadias, and Papadimitriou discuss medoids in Chapter 8.

1.3.3.3 Spatial Trends
Spatial trend detection involves finding patterns of change with respect to the neigh-
borhood of some spatial object. Ester, Kriegel and Sander (1997) provide a neigh-
borhood search algorithm for discovering spatial trends. The procedure performs a 
breadth-first search along defined neighborhood connectivity paths and evaluates a 
statistical model at each step. If the estimated trend is strong enough, then the neigh-
borhood path is expanded in the next step.

In Chapter 9, a new chapter solicited for the second edition of this book, 
Fotheringham, Charlton, and Demšar describe the use of geographically weighted 
regression (GWR) as an exploratory technique. Traditional regression assumes that 
the relationships between dependent and independent variables are spatially constant 
across the study area. GWR allows the analyst to model the spatial heterogeneity and 
seek evidence whether the nonstationarity found is systematic or noise. This allows 
the analyst to ask additional questions about the structures in the data. GWR is also a 
technique that benefits greatly from GVis, and Fotheringham, Charlton, and Demšar 
use GVis analytics to examine some of the interactions in the GWR parameter sur-
faces and highlight local areas of interest.

1.3.3.4 Spatial Generalization
Geographic phenomena often have complex hierarchical dependencies. Examples 
include city systems, watersheds, location and travel choices, administrative regions, 
and transportation/telecommunications systems. Spatial characterization and gen-
eralization is therefore an important geographic data-mining task. Generalization-
based data mining can follow one of two strategies in the geographic case. Spatial 
dominant generalization first spatially aggregates the data based on a user-provided 
geographic concept hierarchy. A standard attribute-oriented induction method is 
used at each geographic aggregation level to determine compact descriptions or pat-
terns of each region. The result is a description of the pre-existing regions in the 
hierarchy using high-level predicates. Nonspatial dominant generalization generates 
aggregated spatial units that share the same high-level description. Attribute-oriented 
induction is used to aggregate nonspatial attributes into higher-level concepts. At each 
level in the resulting concept hierarchy, neighboring geographic units are merged if 
they share the same high-level description. The result is a geographic aggregation 
hierarchy based on multidimensional information. The extracted aggregation hier-

archy for a particular geographic setting could be used to guide the application of 
confirmatory spatial analytic techniques to the data about that area.

1.3.3.5 Spatial Association
Mining for spatial association involves finding rules to predict the value of some 
attribute based on the value of other attributes, where one or more of the attributes 
are spatial properties. Spatial association rules are association rules that include 
spatial predicates in the precedent or antecedent. Spatial association rules also have Co
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18  Geographic Data Mining and Knowledge Discovery

confidence and support measures. Spatial association rules can include a variety of 
spatial predicates, including topological relations such as “inside” and “disjoint,” 
as well as distance and directional relations. Koperski and Han (1995) provide a 
detailed discussion of the properties of spatial association rules. They also present 
a top-down search technique that starts at the highest level of a geographic concept 
hierarchy (discussed later), using spatial approximations (such as minimum bound-
ing rectangles) to discover rules with large support and confidence. These rules form 
the basis for additional search at lower levels of the geographic concept hierarchy 
with more detailed (and computationally intensive) spatial representations.

Chapter 10 by Malerba, Lanza, and Appice discusses INGENS 2.0, a prototype GIS 
that incorporates spatial data-mining techniques. Malerba and his co-authors reported 
on INGENS in the first edition of this book; their updated chapter indicates the progress 
that has been made on this software since 2001. INGENS is a Web-based, open, exten-
sible architecture that integrates spatial data-mining techniques within a GIS environ-
ment. The current system incorporates an inductive learning algorithm that generates 
models of geographic objects from training examples and counter-examples as well 
as a system that discovers spatial association rules at multiple hierarchical levels. The 
authors illustrate the system through application to a topographic map repository.

1.3.4 GEOVISUALIZATION

Earlier in this chapter, we noted the potential for using visualization techniques 
to integrate human visual pattern acuity and knowledge into the KDD process. 
Geographic visualization (GVis) is the integration of cartography, GIS, and scien-
tific visualization to explore geographic data and communicate geographic informa-
tion to private or public audiences (see MacEachren and Kraak 1997). Major GVis 
tasks include feature identification, feature comparison, and feature interpretation 
(MacEachren et al. 1999).

GVis is related to GKD since it often involves an iterative, customized process 
driven by human knowledge. However, the two techniques can greatly complement 
each other. For example, feature identification tools can allow the user to spot the 
emergence of spatiotemporal patterns at different levels of spatial aggregation and 
explore boundaries between spatial classes. Feature identification and comparison 
GVis tools can also guide spatial query formulation. Feature interpretation can help 
the user build geographic domain knowledge into the construction of geographic 
concept hierarchies. MacEachren et al. (1999) discuss these functional objects and a 
prototype GVis/GKD software system that achieves many of these goals.

MacEachren et al. (1999) suggest that integration between GVis and GKD should 
be considered at three levels. The conceptual level requires specification of the high-
level goals for the GKD process. Operational-level decisions include specification 
of appropriate geographic data-mining tasks for achieving the high-level goals. 
Implementation level choices include specific tools and algorithms to meet the oper-
ational-level tasks.

In Chapter 11, Gahegan updates his chapter from the first edition and argues that 
portraying geographic data in a form that a human can understand frees exploratory 
spatial analysis (ESA) from some of the representational constraints that GIS and 
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Geographic Data Mining and Knowledge Discovery 19

geographic data models impose. When GVis techniques fulfill their potential, they 
are not simply display technologies by which users gain a familiarity with new data-
sets or look for trends and outliers. Instead, they are environments that facilitate the 
discovery of new geographical concepts and processes and the formulation of new 
geographical questions. The visual technologies and supporting science are based 
on a wide range of scholarly fields, including information visualization, data mining, 
geography, human perception and cognition, machine learning, and data modeling.

Chapter 12 by Guo is a new chapter solicited for the second edition. In this chap-
ter, Guo introduces an integrated approach to multivariate analysis and GVis. An 
integrated suite of techniques consists of methods that are visual and computational 
as well as complementary and competitive. The complementary methods examine 
data from different perspectives and provide a synoptic view of the complex pat-
terns. The competitive methods validate and crosscheck each other. The integrated 
approach synthesizes information from different perspectives, but also leverages 
the power of computational tools to accommodate larger data sets than typical with 
visual methods alone.

1.3.5 SPATIOTEMPORAL AND MOBILE OBJECTS DATABASES

Perhaps the most striking change in GKD and data mining since the publication of 
the first edition of this book in 2001 is the rise of spatiotemporal and mobile objects 
databases. The development and deployment of LATs and geosensor networks are 
creating an explosion of data on dynamic and mobile geographic phenomena, with a 
consequent increase in the potential to discover new knowledge about dynamic and 
mobile phenomena.

LATs are devices that can report their geographic location in near-real time. LATs 
typically exploit one or more georeferencing strategies, including radiolocation 
methods, GPS, and interpolation from known locations (Grejner-Brzezinska 2004). 
An emerging LAT is radiofrequency identification (RFID) tags. RFID tags are cheap 
and light devices attached to objects and transmit data to fixed readers using passive 
or active methods (Morville 2005).

LATs enable location-based services (LBS) that provide targeted information to 
individuals based on their geographic location though wireless communication net-
works and devices such as portable computers, PDAs, mobile phones, and in-vehicle 
navigation systems (Benson 2001). Services include emergency response, navigation, 
friend finding, traffic information, fleet management, local news, and concierge ser-
vices (Spiekermann 2004). LBS are widely expected to be the “killer application” for 
wireless Internet devices; some predict worldwide deployment levels reaching one 
billion devices by 2010 (Bennahum 2001; Smyth 2001).

Another technology that can capture data on spatiotemporal and mobile phe-
nomena is geosensor networks. These are interconnected, communicating, and 
georeferenced computing devices that monitor a geographic environment. The geo-
graphic scales monitored can range from a single room to an entire city or eco-
system. The devices are typically heterogeneous, ranging from temperature and 
humidity sensors to video cameras and other imagery capture devices. Geosensor 
networks can also capture the evolution of the phenomenon or environment over  
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20  Geographic Data Mining and Knowledge Discovery

time. Geosensor networks can provide fixed stations for tracking individual vehi-
cles, identify traffic patterns, and determine possible stops for a vehicle as it travels 
across a given domain in the absence of mobile technologies such as GPS or RFID 
(Stefanidis 2006; Stefanidis and Nittel 2004).

In the first edition of this book, we included only one chapter dedicated to mining 
trajectory data (Smyth 2001). Recognizing the growth in mobile technologies and 
trajectory data, the second edition includes five new chapters on knowledge discov-
ery from spatiotemporal and mobile objects databases.

In Chapter 13, Yuan proposes spatiotemporal constructs and a conceptual 
framework to lead knowledge discovery about geographic dynamics beyond what 
is directly recorded in spatiotemporal databases. Recognizing the central role of 
data representation in GKD, the framework develops geographic constructs at a 
higher level of conceptualization than location and geometry. For example, higher-
level background knowledge about the phenomena in question can enhance the 
interpretation of an observed spatiotemporal pattern. Yuan’s premise is that activi-
ties, events, and processes are general spatiotemporal constructs of geographic 
dynamics. Therefore, knowledge discovery about geographic dynamics ultimately 
aims to synthesize information about activities, events, or processes, and through 
this synthesis to obtain patterns and rules about their behaviors, interactions, and 
effects.

Chapter 14 by Wachowicz, Macedo, Renso, and Ligtenberg also addresses the 
issue of higher-level concepts to support spatiotemporal knowledge discovery. The 
authors note that although discovering spatiotemporal patterns in large databases is 
relatively easy, establishing their relevance and explaining their causes are very dif-
ficult. Solving these problems requires viewing knowledge discovery as a multitier 
process, with more sophisticated reasoning modes used to help us understand what 
makes patterns structurally and meaningfully different from another. Chapter 14 
proposes a multitier ontological framework consisting of domain, application, and 
data ontology tiers. Their approach integrates knowledge representation and data 
representation in the knowledge discovery process.

In Chapter 15, Cao, Mamoulis, and Cheung focus on discovering knowledge 
about periodic movements from trajectory data. Discovering periodic patterns (that 
is, objects following approximately the same routes over regular time intervals) is 
a difficult problem since these patterns are often not explicitly defined but rather 
must be discovered from the data. In addition, the objects are not expected to follow 
the exact patterns but similar ones, making the knowledge discovery process more 
challenging. Therefore, an effective method needs to discover not only the patterns 
themselves, but also a description of how they can vary. The authors discuss three 
algorithms for discovering period motion: an effective but computationally burden-
some bottom-up approach and two faster top-down approaches.

Chapter 16 by Laube and Duckham discusses the idea of decentralized spatiotem-
poral data mining using geosensor networks. In this approach, each sensor-based 
computing node only possesses local knowledge of its immediate neighborhood. 
Global knowledge emerges through cooperation and information exchange among 
network nodes. Laube and Duckham discuss four strategies for decentralized spatial 
data mining and illustrate their approach using spatial clustering algorithms.Co
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In the final chapter of the book, Kraak and Huisman discuss the space–time cube 
(STC) an interactive environment for the analysis and visualization of spatiotemporal 
data. Using Hägerstrand’s time geographic framework as a conceptual foundation, 
they illustrate the STC using two examples from the domain of human movement 
and activities. The first example examines individual movement and the degree to 
which knowledge can be discovered by linking attribute data to space–time move-
ment data, and demonstrates how the STC can be deployed to query and investigate 
(individual-level) dynamic processes. The second example draws on the geometry of 
the STC as an environment for data mining through space–time query and analysis. 
These two examples provide the basis of a broader discussion regarding the common 
elements of various disciplines and research areas concerned with moving object 
databases, dynamics, geocomputation, and GVis.

1.4 CONCLUSION

Due to explosive growth and wide availability of geo-referenced data in recent years, 
traditional spatial analysis tools are far from adequate at handling the huge volumes 
of data and the growing complexity of spatial analysis tasks. Geographic data min-
ing and knowledge discovery represent important directions in the development of a 
new generation of spatial analysis tools in data-rich environment. In this chapter, we 
introduce knowledge discovery from databases and data mining, with special refer-
ence to the applications of these theories and techniques to geo-referenced data.

As shown in this chapter, geographic knowledge discovery is an important and 
interesting special case of knowledge discovery from databases. Much progress 
has been made recently in GKD techniques, including heterogeneous spatial data 
integration, spatial or map data cube construction, spatial dependency and/or asso-
ciation analysis, spatial clustering methods, spatial classification and spatial trend 
analysis, spatial generalization methods, and GVis tools. Application of data mining 
and knowledge discovery techniques to spatiotemporal and mobile objects databases 
is also a rapidly emerging subfield of GKD. However, according to our view, geo-
graphic data mining and knowledge discovery is a promising but young discipline, 
facing many challenging research problems. We hope this book will introduce some 
recent works in this direction and motivate researchers to contribute to developing 
new methods and applications in this promising field.
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