
Introduction
How cities grow spatially has profound implications for economic efficiency, social equity,
and environmental sustainabiilty. In the United States, for more than half a century the
dominant form of urban growth has been low-density and auto-oriented suburban expan-
sion (Downs, 1998). This urban-development pattern has raised many issues, including
higher costs of infrastructure provision (Burchell et al, 2002), auto dependence (Newman
and Kenworthy, 1999), central-city decline (Downs, 1999), poor transportation accessi-
bility and longer trips (Ewing, 1997; Handy, 1996), spatial barriers for people relying
on public transport to seek economic opportunities (Shen, 1998; 2000), and general
deterioration of environmental conditions (Daniels and Daniels, 2003).

The growing concern that the prevailing development pattern is not in the long-
term interest of cities has become a powerful driving force behind the smart-growth
movement, which emerged in the late 1990s and has since gained great momentum.
Although there is no universally accepted concise definition of `smart growth', this
term is generally used by its proponents to portray some vision of urban development
that promises to help cities achieve certain goals deemed desirable for the community,
the economy, and the environment.(1) The most frequently stated goals are to facilitate
economic growth while protecting the environment, to reduce development costs,
to revitalize central cities, and to improve community liveability. Smart growth is
described as development that helps to achieve these goals by following certain
principles, such as mixing land uses, creating housing and transportation choices,
preserving open space and farmland, fostering distinctive communities with a strong
sense of place, directing new growth toward existing urban areas, and encouraging
community and stakeholder collaboration in development decisions.
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(http://www.smartgrowthamerica.com/whatissg.html), and Smart Growth Network
(http://www.smartgrowth.org/about/default.asp).



The State of Maryland, consisting of twenty-three counties and Baltimore City (see
figure 1), has been a leader in the smart-growth movement.(2) In 1997 the state government
implemented a number of policy programs collectively known as the Maryland Smart
Growth legislation. A primary objective of the Maryland Smart Growth legislation is to
support existing communities by targeting state resources to support development in areas
where the infrastructure is already in place. To achieve this objective, the legislation
includes a core initiative, the `Smart Growth Area Act', which channels state funding
for transportation, infrastructure, housing, and economic development into areas desig-
nated as `Priority Funding Areas' (PFAs). The intent is to use incentives to promote
development and revitalization in central cities and inner suburbs, while discouraging
urban growth in the peripheral areas by denying the state government's subsidies for it
(Cohen, 2002). Meanwhile the legislation includes another key initiative, the `Rural
Legacy Act', which is essentially a grant program that aims to protect valuable
agricultural, forestry, and natural and cultural resources by providing funds to local
government and land trusts to purchase land, easements, and transferable development
rights from willing sellers in designated `Rural Legacy Areas' (RLAs) (Cohen, 2002).

Although Maryland's smart-growth programs encourage and support sensible growth
in designated areas, they do not carry the regulatory power to prevent development either
inside or outside the designated areas. For planners and policymakers in Maryland, it is
crucial to find out whether or not the smart-growth initiatives have facilitated positive
changes in urban-development patterns, and to identify possible ways to improve their
effectiveness. Additionally, planners and policymakers at the state level will benefit from
research that examines internal variations in urban development patterns in this pro-
smart-growth state. It will allow them to gain a fundamental understanding of factors
other than state policies that influence the pace and form of urban growth.

(2) The State of Maryland is situated on the Atlantic Coast and bordered by Washington, DC and
Virginia in the south and Pennsylvania in the north. It has a total area of approximately
32 000 km2, including almost 7000 km2 of water area (Maryland Office of Planning, 1991). Its
population in 2000, according to the decennial census conducted by the US Census Bureau, was
nearly 5.3 million.
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Figure 1. State of Maryland and the eight counties selected for empirical analysis. A color version
of this and subsequent figures is shown on the E&P website at http://www.envplan.com/misc/a3886/.
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More importantly, for planners and policymakers elsewhere who are interested in
learning from the experience of Maryland, a basic understanding of the impact of
smart growth programs on its urban development patterns is essential.

This research is an attempt to examine the effectiveness, or the lack thereof, of
Maryland's smart-growth initiatives in reshaping urban-growth patterns in the state.
It is focused on the influence of the `Smart Growth Area Act' and `Rural Legacy Act'
on the location of new development. Three research questions are addressed. First,
does the PFA designation of an area increase the likelihood for it to be developed?
Second, does the RLA designation decrease the land's development probability?
Finally, does the effectiveness of these two programs vary significantly across local
jurisdictions?

Literature review
In this paper we build upon, and extend, literature on urban growth and land-use change.
The existing literature includes a large collection of theories of land-use change that stem
from different epistemological and disciplinary traditions [see Briassoulis (2000) for a good
overview of theories of land-use change]. However, as Briassoulis (2000) points out, only
some theories, especially ones based on a positivist epistemology, can effectively filter
down to operational models for analyzing the causes and effects of land-use change.
To address the research questions raised above, in our literature review we focus on
two strands of the literature: one in which the effects of growth-management policies
on land use and urban development are examined, and the other in which approaches
to modeling land-use change are explored.

Effects of growth management on land use and urban development
There is a large volume of literature on the spatial, economic, and social impacts
of governmental regulations on land use and urban development. In an influential
early study in this field, Dowall (1984) found that growth controls enacted by local
jurisdictions in California placed a major constraint on residential land supply and
development and caused substantial housing-price increases. Shen (1996) examined the
cumulative regional impact of locally enacted growth regulations in the case of the San
Francisco Bay Area. He found that there were substantial spillovers of urban growth
from jurisdictions that enacted such restrictions to the rest of the region. Pendall (1999)
studied the relationship between land-use regulations and urban sprawl, which he
defined as low-density urbanization. He found that land-use controls that shift the
cost of development onto builders reduce sprawl, whereas regulations that mandate
low densities increase sprawl. Carruthers and Ulfarsson (2002) analyzed effects of
government policies on urban development by focusing on the relationship between
political fragmentation and low-density urban growth. Their empirical result indicated
that political fragmentation results in lower densities.

The aforementioned studies all showed that governmental land-use regulations
enacted by local jurisdictions significantly affect the spatial pattern of urban growth,
but the effects may not be what are considered desirable for the metropolitan area or
region as a whole. One important implication, therefore, is that the regional or state
government should play the key role in designing and implementing policies and
programs for managing urban growth.

Studies of effects of state-level growth-management policies on patterns of land use
have presented contrary findings. Nelson (1999) researched the impacts of growth
management on population density and farmland preservation. He found that two
states, Florida and Oregon, which had growth-management policies, witnessed only
modest decreases in population densities during the 1980s, whereas a comparison state,
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Georgia, witnessed a substantial drop in density. He also found that, during the same
time period, Florida lost 0.27 hectares of farmland for each new resident, Oregon lost
only 0.13 hectares per new resident, but Georgia lost 0.85 hectares for each additional
resident. Nelson's findings, however, were challenged by Kline (2000), who showed that
ten states in the United States performed better than Oregon in preventing urban
sprawl, whereas twelve states performed worse than Georgia, and that eleven states
performed better than Florida in preserving farmland, whereas twenty states, including
Georgia, performed better than Oregon.

A recent study by Anthony (2004) also suggests that the existing knowledge of the
relationship between state growth-management efforts and urban land-use patterns has
major gaps. Anthony measured the change in urban densities in forty-nine states over
a fifteen-year period from 1982 to 1997, and found that growth-management states
generally experienced a lower population-density decrease than states without growth
management. However, his regression analysis indicates that state growth management
did not have a statistically significant effect on population-density change.

Is Maryland's Smart Growth legislation, which is a state effort, effective in achiev-
ing its objectives? The answer provided in a recent study by Howland and Sohn
(forthcoming) is mixed. Howland and Sohn looked at the spatial distribution of water
and sewer investments in Maryland after the implementation of the `Smart Growth
Area Act'. They found that there were variations across counties in their compliance
with the Smart Growth initiative. Although projects built between 1997 and 2002
were located primarily inside PFAs, a significant percentage of both state-funded and
locally funded projects went outside PFAs. Their empirical analysis suggests that high
population-growth rates and stronger local tax bases increase the likelihood for infra-
structure investments to take place outside PFAs, whereas greater state subsidies in
a project and higher county per capita income generate the opposite effect.

In another recent study, Jantz et al (2003) assessed the potential impacts of regional
policies on future urban growth in the Washington ^ Baltimore metropolitan region,
and found Maryland's smart-growth initiatives ineffective in conserving natural-
resource land. Applying a cellular automaton model, they projected future urban
growth in the region based on three policy scenarios. The c̀urrent trends' scenario,
which reflects the existing governmental policies including the PFA designations in
Maryland, provides minimal protection for land located outside the designated growth
areas. Meanwhile the other two scenarios, `managed growth' and ècologically sustain-
able growth', execute higher levels of protection of natural-resource land located outside
the PFA. The simulation result for the c̀urrent trends' scenario shows that, despite
Maryland's smart-growth policies, low-density development patterns will continue and
areas on the urban fringe that are currently rural or forested will be urbanized.
However, as the authors acknowledge, as a result of the design of the adopted model
the effect of the PFAwas simulated indirectly by putting a resistance to development on
land outside the PFA, which raises the question of whether it adequately captured the
essence of the `Smart Growth Area Act', that is, creating incentives for development
inside the PFA.

Models of land-use change
Since the early 1980s there has been some significant progress in developing formal
models of urban growth and change. Wegener (1994) identified several important
advances in urban modeling. One fundamental advance in this field was the incorpo-
ration of random-utility theory into models of land use and travel demand. Another
major development was the maturing of geographical information systems (GIS) as a
powerful tool for processing, managing, and analyzing microscale data on land use and
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activity patterns. These developments resulted in a variety of new or improved models
for urban planning and management.

For the purpose of developing a methodology to address the research questions for
this paper, we carefully reviewed a considerable number of recent publications on
modeling land-use change. There are several thorough overviews of models of land-
use change (Agarwal et al, 2002; Briassoulis, 2000; EPA, 2000), which provide a rich
set of operational approaches for us to compare in terms of their suitability for our
paper. We decided that the most useful approaches for our paper are the ones devel-
oped by Kitamura et al (1997), Landis (2001), Landis and Zhang (1998a; 1998b), and
Morita et al (1997).

Landis and Zhang (1998a; 1998b) adopted the multinomial logit modeling frame-
work to study land-use change in California. Their starting point for conceptualizing
the model was the observation that the process of land-use change is fundamentally
discrete. They noticed that land-use change in a metropolitan area occurs as the sum of
individual, parcel-level, land-use changes, and that the traditional techniques of regres-
sion analysis are poorly suited to modeling discrete processes. The alternative they
adopted was the discrete choice framework (Ben-Akiva and Lerman, 1985; Domencich
and McFadden, 1975). Specifically, Landis and Zhang employed the multinomial logit
framework based on several assumptions:
(1) the decision to change land use on a site will be based on a rational evaluation of the
prospective profit or rent associated with different development forms;
(2) the potential profit or rent associated with each land-use change is determined by
a set of attributes;
(3) the land-use-change function is probabilistic because some attributes are unobservable.

In their model, the probability of land-use change is a function of initial site use,
site characteristics, site accessibility, community characteristics, policy factors, and rela-
tionship to neighboring sites. A total of nine different types of land-use change were
considered, and more than two dozen independent variables were employed to determine
the probability of land-use change. Similar approaches were taken by Kitamura et al
(1997) and Morita et al (1997) to examine land-use change in a Japanese case study.

In his more recent work, Landis (2001) simplified the multinomial framework to
make it a binary logit model of land conversion from nonurban to urban. This model,
with the dependent variable measuring the binary choices of whether a unit of land
stays nonurban or becomes urbanized, services an especially useful example for our
research. The key methodological components of our research, explained in the next
section, require a model of land conversion from nonurban to urban.

Research methodology
The research methodology consists of two major components. The first is a longitudinal
analysis of land conversion for the state of Maryland. Adopting the idea of using models
as a quasiexperimental mechanism for urban policy research (Shen, 1996), two binary
logit models are estimated to characterize land-use change from nonurban to urban: one
model for the pre-smart-growth period (1992 ^ 97) and the other for the post-smart-
growth period (1997 ^ 2002). These models will show us whether the implementation of
smart-growth initiatives, especially the establishment of PFAs and RLAs, has had a
significant overall effect on urban development patterns in the state.

The second methodological component is a cross-sectional comparison of land
conversion among individual counties. Again, two binary logit models are estimated
for the two time periods, but here the models are estimated for individual counties.
By comparing the model estimates across counties we can identify variations in the
effectiveness of the smart-growth programs across local jurisdictions.
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Model specification
Following Landis (2001), Landis and Zhang (1998a), and Morita et al (1997), the
specification of the logit models of land conversion assumes that the probability for
a given land area to change from nonurban to urban use is a function of site characteris-
tics, proximity to transportation infrastructure and existing urban areas, and regulatory
constraints. Ideally the geographical unit of analysis for studying land-use change
should be the parcel. The MdProperty View, a GIS database created and updated
annually by the Maryland Department of Planing, includes parcel data.(3) However,
these parcel data contain parcel centroids and size attributes only (that is, parcel
boundaries are unavailable) and have rather incomplete information about when the
land was first developed, which make the data unsuitable for modeling land conversion.
We therefore used the 1 ha (100� 100 m) grid cell as the unit of analysis.

Using grid cells as units of analysis has both advantages and disadvantages. The
fundamental disadvantage is that grid cells are not the natural unit for making a land-
use decision. A 1 ha grid cell is much larger than a typical residential parcel, which is
roughly 0.1 hectares, but much smaller than a typical zoning district. Therefore, using
this artificially created unit of analysis may not lead to a satisfactory understanding of
dynamics in land use. Moreover, it is vulnerable to the modifiable areal unit problem.
On the other hand, the most important advantage of working with grid cells is that it
allows us to make use of land-use and land-cover (LULC) data derived from satellite
imagery to map land-use changes. Further, grid cells have stable boundaries over time,
which simplifies the task of identifying land conversion.

For each time period, the sample for estimating the logit model consists of all grid
cells that were nonurban at the beginning of the period.(4) During the time period, each
grid cell can either retain its original nonurban status or it can change from nonurban
to urban. The converse land-use change, from urban to nonurban, is assumed never to
occur. If the land is nonurban by the end of the time period, the dependent variable
takes on a value of `0'. Alternatively, if the land is urbanized by the end of the time
period, the dependent variable takes on a value of `1'. The general expression of the
binary logit model is as follows:

Pi �
1

1� exp�ÿ� b0 � b1X1 � b2X2 � :::� bkXk ��
, (1)

where Pi is the dependent variable measuring the probability for a grid cell to become
urbanized, and X1 , X2 , .::, Xk are independent variables influencing the probability of
land conversion from nonurban to urban.

Six types of independent variables were included in each model: (1) smart growth
policies, which include two dummy variables indicating whether a grid cell is within a
PFA or RLA, respectively, for the post-smart-growth period; (2) location character-
istics, which measure the proximity of each grid cell to other features of interest,
such as urbanized lands, highways, and municipalities; (3) site characteristics, which
measure the physical characteristics of each grid cell; (4) characteristics of neighboring
sites, which are used to address the potential problems of neighborhood effects
or spatial autocorrelation; (5) demographic characteristics; and (6) infrastructure
characteristics. All these variables are listed in table 1. The expected direction of

(3) The MdProperty View database includes property-tax maps and assessment data, monthly
property sales records, highway and road maps, LULC data, satellite imagery, and maps of
PFAs for jurisdictions in Maryland.
(4) As we will explain later in this paper, we added some constraints on the selection of grid cells
for logit modeling. Consequently, the actual sample is smaller.
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influence of each variable on the probability of land conversion from nonurban to
urban is indicated by the plus or minus sign shown in the table.

For some of the independent variables the expected effects on the dependent
variable are well established theoretically and/or empirically. The first smart-growth-
policy variable, PFA, is expected to have a positive effect because the state funding
should provide added incentive for development to take place in these target areas. The
second one, RLA, is expected to have the opposite effect, because the state policy
should protect the target areas from urban development.

The three variables that measure the location characteristics are all expected to be
negatively related to the probability of urban development. The farther a site is located
from any existing urbanized land, the less likely it is to be developed. Similarly, the
farther a site is located from highways, or from a municipality, the lower the possibility
for it to change from a nonurban to an urban use.

The two site characteristics variables are both expected to reduce the probability of
development. If land is inside a 100-year or 500-year floodplain it is less likely to be
developed because of the risk of flood. Higher slope of the site will increase the
infrastructure and construction costs and hence lower the development probability.

One of the two variables characterizing the neighboring sites of a given piece of
land is expected to increase the development probability of the land. Specifically, a
given grid cell is more likely to be urbanized if more of its neighboring grid cells are
urbanized. The other neighboring site characteristic variable is likely to generate the
opposite effect. As the difference between the slope of a given cell and the average

Table 1. Independent variables and their expected effects on the probability of land development.

Independent variables Expected Source
effect

Smart-growth policies
Priority Funding Area � Maryland Department of Planning,

MdProperty View
Rural Legacy Area ÿ Maryland Department of Natural

Resources
Local characteristics
Distance to urban area ÿ Maryland Department of Planning,

MdProperty View
Distance to highway ÿ Maryland Department of Planning,

MdProperty View
Distance to municipality ÿ Maryland Department of Planning,

MdProperty View
Site characteristics
Floodplain ÿ Federal Emergency Management Agency
Slope ÿ US Geological Survey
Characteristics of neighboring sites
Difference between average adjacent
slope and site slope

ÿ US Geological Survey

% of adjacent grid cells urbanized � Maryland Department of Planning,
MdProperty View

Demographic characteristics
Population density in 1990 �=ÿ US Census of Population and Housing
% of population white in 1990, 2000 �=ÿ US Census of Population and Housing
% of population foreign-born in 1990,
2000

� US Census of Population and Housing

Infrastructural characteristics
Sewerage service area � Maryland Department of Planning
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slope of adjacent cells becomes larger, the infrastructure and construction costs
increase, which subsequently lower the development probability.

For two of the demographic characteristic variables, the expected influence on
nonurban-to-urban land conversion is ambiguous. Preexisting population density,
measured as the gross density for the block group in which a given grid cell is located,
can either be an indication of high demand for urban land in the area or an indication
of having little open space left in the area. In the former case higher population density
will increase development possibility, whereas in the latter case higher density will be
negatively related to the probability of development. Similarly unclear is the influence
of the percentage of residents in the block group who are white. The conventional
notion of `white flight' being the primary source of suburban growth would suggest
that a higher percentage of white population will have a positive effect on the
development probability. However, if suburban growth is fueled by the city-to-suburb
migration and international immigration of people with diverse ethnic backgrounds,
this variable may show a negative relationship with the dependent variable. The third
demographic variable, the percentage of residents in the block group who are foreign-
born, is expected to have a positive effect on land-development probability because
international immigration is a major source of population growth, especially in
large metropolitan areas, and because immigrants show the tendency to form ethnic
residential and commercial clusters.

Finally, the infrastructure characteristic variable is expected to facilitate urban
development. If land is inside an existing sewerage service area, it is more likely to
be developed because the sewerage infrastructure will increase the land value and
subsequently the development probability. Water infrastructure generates the same
positive effect, but it was not included in our models as an independent variable
because we found it to be highly correlated with sewage infrastructure and provided
no additional explanatory power.

It is important to note that the above list of independent variables is not exhaustive.
Many other factors, ranging from macroeconomic conditions (for example, employment
growth and interest rate change) to microenvironmental and social conditions (for
example, presence of hazardous materials and availability of public-transportation
service and quality public schools), may also play significant roles in influencing
land-use decisions. Despite the omission of these variables, we believe that our model
specification is adequate because it includes all the key determinants (microlevel factors)
of land-use change discussed in the literature on modeling land-use change. Further,
the model estimation is not expected to be significantly affected by the omission of the
omitted macrofactors because they influence all land areas.

Data and analytical procedure
Due to the extraordinarily large amount of data processing and analysis required for
this work, we decided to select only eight of the twenty-three local jurisdictions in
Maryland for the empirical study. These eight counties are Anne Arundel County,
Baltimore County, Carroll County, Howard County, Montgomery County, St Mary's
County, Washington County, and Wicomico County, which are shown in figure 1.

These eight counties were chosen for the empirical analysis because, to some
extent, they are representative of counties with different histories of growth man-
agement and different patterns of urban growth.(5) Anne Arundel County, the home

(5) Facts about these eight counties come from three sources: (1) the United States Census Bureau's
1990 and 2000 censuses of population and housing; (2) a report on models and guidelines for
managing Maryland's growth published by Maryland Office of Planning (1995); and (3) county
codes for counties in the state of Maryland.
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county of the state capital, Annapolis, has a long coastline along the Chesapeake Bay,
a primary focus of environmental conservation in Maryland. This county experienced
substantial growth during the 1990s, with a 14.6% increase in the number of residents.
Its population in 2000 was close to 490 000.

Baltimore County has a long tradition of growth management. It is nationally
known for implementing urban-growth boundaries to influence land-use patterns.
Surrounding Baltimore City, which lost over 84 000 residents between 1990 and 2000,
Baltimore County has probably absorbed a large portion of out-migration from the
central city. The county experienced a fairly high pace of population growth (9.0%)
during the 1990s. Its population in 2000 reached 750 000.

Carroll County, another county within the Baltimore Primary Metropolitan Stat-
istical Area, experienced rapid population growth (22.3%) during the 1990s. Its population
in 2000 was approximately 123 000. The county had few growth management measures in
place prior to 1997. However, since 1997 the county's strong desire to preserve its rich
tradition of agriculture has resulted in tremendous rates of participation in one of the
most successful agricultural-land-preservation programs in the country.

With its location between Washington, DC, and Baltimore City, Howard County
has been viewed as a desirable place for residential development. In fact, during the
1990s the county witnessed very fast growth of the population (32.3%) and housing
units (27.9%). Its population reached almost 250 000 in 2000. Another notable charac-
teristic of Howard County is that, among all counties in Maryland, it has the highest
average household income and its adult residents are on average the most highly
educated.

Located immediately northwest of Washington, DC, Montgomery County has long
been a sought after suburban location in the District of Columbia metropolitan area.
Between 1990 and 2000 the county continued to experience fast growth with a 14.5%
increase in the number of residents. With a population of over 870 000 it is the most
populous and one of the most affluent among counties in Maryland. Montgomery County
has a long tradition (starting in the 1960s) of implementing policies and programsöwhich
include a growth boundaryöto shape urban-growth patterns, preserve open space, and
protect agricultural lands.

St Mary's County is located in southern Maryland on the western shore of the
Chesapeake Bay, with only slightly more than 86 000 residents in 2000. Its popu-
lation has been steadily increasing for several decades, including a 13.5% increase
during the 1990s. The county ranked first in Maryland in job growth and personal-
income growth from 1996 to 2001. This rapid growth has not been managed with
strong growth-control measures.

Washington County, a county with a rich agricultural tradition, is located in the
Great Valley of western Maryland. With a modest 8.7% of growth during the 1990s,
its population in 2000 was close to 132 000. Starting from its 1983 Comprehensive
Plan, the county has deliberately introduced growth management through the adoption
of designated `growth areas'.

Located in the center of the Delmarva Peninsula, Wicomico County is one of
nine counties constituting Maryland's Eastern Shore. With slightly fewer than 85 000
residents in 2000, the county experienced moderate population growth during the last
three decades, including a 13.9% increase of residents during the 1990s. It witnessed
substantial loss of its prime agricultural lands to low-density urban development.

The dependent variable for logit models, which indicates whether the land use in a
grid cell is urban, is measured on the basis of LULC data. The data for 1992, known as
the 1992 National Land-Cover Data (NLCD), were obtained from the US Geological
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Survey (USGS). The LULC data for both 1997 and 2002 were provided by the Maryland
Department of Planning as part of the MdProperty View database.

It is important to note some significant differences between the NLCD data from
the USGS and the LULC data from the Maryland Department of Planning. The 1992
NLCD data were obtained using a modified version of the level II Anderson LULC
classification system, and were derived from maximum likelihood classification of
two-date thematic-mapper imagery at 30 m resolution with the focus on land-cover
classification (Vogelmann et al, 1998). The accuracy of this dataset was reported as
being relatively low, especially for low-density developed areas (McCauley and Goetz,
2004; Stehman et al, 2003). The 1997 and 2002 LULC data, on the other hand, were
obtained using the Level II Anderson classification system, and were derived from
manually interpreted image analysis focused on land-use classification. These data
products provide relatively high accuracy. Notwithstanding the differences, we matched
these datasets for the different years because there was no better option. To reduce
discrepancies between the two data sources, we used the parcel `year-built' information
provided by the MdProperty View database to make adjustments to the 1992 NLCD.
Although there are remaining data discrepancies, they are unlikely to significantly and
systematically affect the results of our analysis.

We designated a grid cell `urban' for a given year if its centroid is located inside
a land area in the corresponding NLCD or LULC map that is shown to be developed.
It can be residential, industrial, commercial, or another class of urbanized land. For
the 1992 NLCD, the `urban' designation is an aggregation of three classes of `developed
areas' plus the `urban/recreational grasses' land. For the 1997 and 2002 LULC data, the
`urban' designation is an aggregation of eight more detailed classes of `urban built-up'
areas plus the `transportation' land.

To identify land-use conversion taking place among the original nonurban grid
cells during each time period, we used GIS to overlay the LULC layers for the three
years. The resulting maps of land-use change are shown in figure 2.

On the basis of the data on land-use change, we obtained the samples for modeling.
We excluded those grid cells that are extremely unlikely to be developed. These include
grid cells known to be wetlands or protected lands.(6) Grid cells located more than
10 miles (approximately 16 km) from the nearest highway or with a slope exceeding 158
were excluded as well. Realizing that conversion of land from nonurban to urban use
occasionally occurs in locations beyond 10 miles from any highway, we later also ran
models without applying this criterion for excluding cases. The resulting regression
coefficients and levels of statistical significance were quite similar, but the goodness
of fit of estimated models dropped when the samples included huge numbers of
remotely located grid cells that remained nonurban throughout the time periods.
In this paper we report results that were obtained using only observations located
within 10 miles from the nearest highway.

The data sources for the explanatory variables are indicated in table 1. The smart-
growth policy variables were obtained by overlaying the GIS layers of PFA and RLA
with the layers of land-use change. The PFAs and RLAs for the eight counties are
shown in figure 3. Note that these counties display several distinctive patterns of land
conversion. In Baltimore, Montgomery, and Washingtonöcounties which have a strong
tradition of growth managementödevelopment tended to take place near the existing
urban areas during 1992 ^ 97 as well as 1997 ^ 2002. In Carroll, Howard, and St Mary's,

(6) According to the Maryland Department of Natural Resources (DNR), the protected lands
include Agricultural Land Preservation Foundation Easements/Districts, County Parks, DNR
land, Environmental Trust Easements, Federal Land, Forest Legacy Easements, and Private
Conservation Properties.
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on the other hand, development appeared to be more scattered. The most interesting
development patterns are seen in Anne Arundel County, where land conversion
was scattered all over the county during the first period, but became much more
concentrated near the existing urban areas during the second period.

Location characteristics were measured on the basis of GIS layers of highways,
urbanized areas, and municipalities, which are elements of the MdProperty View
database. The site characteristics data originated from two governmental agencies.
The floodplain data were from the Federal Emergency Management Agency, and the
slope data were derived from the digital elevation model (DEM) data provided by
USGS. The MdProperty View database was also the data source for determining the
percentage of adjacent grid cells that are urban. Difference between average adjacent
slope and site slope was derived from the USGS DEM data.

The demographic characteristics are block group data obtained from either the
1990 or 2000 US Census of Population and Housing. Finally, the infrastructural
characteristics were measured by whether the land is located inside sewage service
areas, based on GIS data obtained from the Maryland Department of Planning.

Land urbanized before 1992

Land urbanized 1992 ± 1997

Land urbanized 1997 ± 2002

Anne Arundel
Baltimore

Carroll

Howard Montgomery
St Mary's

Washington Wicomico

Figure 2. Land-use changes in eight Maryland counties, 1992 ^ 2002.
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To examine the overall effects of the smart growth programs on patterns of land
conversion in the state, we used the pooled data for the eight counties to estimate two
logit models for 1992 ^ 97 and 1997 ^ 2002, respectively. Table 2 displays the descriptive
statistics of the variables included in the first model, and table 3 displays the parallel
information for the second model.

To make comparisons among the eight counties of the effectiveness of the smart-
growth program we also used data for individual counties to estimate the logit models.

Primary findings
We will first look at the estimated models for the pooled data for the eight counties
to examine the effectiveness of the `Smart Growth Area Act' and `Rural Legacy Act'
in the state as a whole (as indicated by the eight counties jointly as a group). We will
then discuss the results for individual counties to understand variations in the policy
effectiveness across the counties.

Anne Arundel
Baltimore

Carroll

Howard Montgomery
St Mary's

Washington Wicomico

Land urbanized
before 1992

Land urbanized
1992 ± 1997

Land urbanized
1997 ± 2002

Priority Funding Area
Rural Legacy Area

Figure 3. Priority Funding Areas and Rural Legacy Areas in eight Maryland counties.

1468 Q Shen, F Zhang



General patterns of land conversion in the state
The results of model estimations for the state, as represented by the eight counties, are
shown in table 4. Notice, first, that the two models, for the time periods 1992 ^ 97 and
1997 ^ 2002, respectively, are generally consistent in terms of the signs and statistical
significance of most regression coefficients. In both models, being located farther from
an existing urbanized area, in a floodplain, or in a block group that has a higher
percentage of residents who are white reduces the probability for the site to be
urbanized. On the other hand, having a higher percentage of adjacent grid cells

Table 2. Descriptive statistics of the pooled data, 1992 ^ 97.

N Minimum Maximum Mean SD

Urbanized 484 455 0.00 1.00 0.08 0.27
Distance to urban area (km) 484 455 0.00 4.81 0.45 0.40
Distance to highway (km) 484 455 0.02 16.10 4.62 3.88
Distance to municipality (km) 484 455 0.00 39.22 8.56 7.63
Floodplain 484 455 0.00 1.00 0.05 0.22
Slope 484 455 0.00 15.00 2.62 2.13
Difference between average adjacent 484 455 0.00 7.91 0.48 0.52

slope and site slope
Percentage of adjacent grid cells 484 455 0.00 100.00 9.11 18.47

urbanized
Population density, 1990 484 455 0.02 71.43 1.41 2.94
Percentage of population white, 484 455 0.00 100.00 91.20 12.63

1990
Percentage of population foreign- 484 455 0.00 59.03 2.16 3.33

born, 1990
Sewerage service area 484 455 0.00 1.00 0.08 0.27
Valid N (listwise) 484 455

Note: SD, standard deviation.

Table 3. Descriptive statistics of the pooled data, 1997 ^ 2002.

N Minimum Maximum Mean SD

Urbanized 453 159 0.00 1.00 0.11 0.32
Priority Funding Area 453 159 0.00 1.00 0.17 0.38
Rural Legacy Area 453 159 0.00 1.00 0.15 0.35
Distance to urban area (km) 453 159 0.00 4.81 0.42 0.35
Distance to highway (km) 453 159 0.02 16.10 4.68 3.88
Distance to municipality (km) 453 159 0.00 39.22 8.63 7.66
Floodplain 453 159 0.00 1.00 0.05 0.22
Slope 453 159 0.00 15.00 2.65 2.17
Difference between average adjacent 453 159 0.00 7.92 0.48 0.53

slope and site slope
Percentage of adjacent grid cells 453 159 0.00 100.00 8.84 17.11

urbanized
Population density, 1990 453 159 0.00 75.41 1.29 2.75
Percentage of population white, 453 159 2.28 100.00 89.50 12.56

2000
Percentage of population foreign- 453 159 0.00 88.05 3.53 4.62

born, 2000
Sewerage service area 453 159 0.00 1.00 0.06 0.24
Valid N (listwise) 453 159

Note: SD, standard deviation.
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urbanized, being located in a block group where a higher percentage of residents
are foreign-born, or being located inside a designated sewerage service area increases
the likelihood for the land to be developed. These results are consistent with the
expectations indicated earlier in table 1.

Second, several variables show inconsistent effects on the dependent variable. The
two variables measuring the distances to the nearest highway and municipality have
different signs in the two models. This inconsistency is probably attributable to the
dominance of the variable `distance to urban area' in explaining the influence of site
location on land conversion, which leaves relatively little to be captured by the
distances to the nearest highway and municipality. Also showing inconsistent results
are the variables measuring site slope, the difference between site slope and average
slope of adjacent cells, and gross population density in the census block group. It is
especially unexpected to see the positive coefficients for both slope variables in the
model for the post-smart-growth period. These positive coefficients suggest that devel-
opment was more likely to occur on lands with steeper slopes. It is possible that these
unexpected signs actually capture the reality that, in some of the counties located near
the Chesapeake Bay or the Atlantic Ocean, much of the undeveloped flat land is at very
low altitude and subject to flooding, which causes new developments to increasingly
locate in areas with higher elevations and slopes. Indeed, upon closer examination of
data for individual counties, we found that slope is positively and significantly related
to land conversion in Wicomico and St Mary's counties. The association is negative for
five counties and, in several cases, statistically insignificant.

Finally, and most importantly, in the model for 1997 ^ 2002, the smart-growth
policy variables, PFA and RLA, both show statistically significant effects on the depend-
ent variable with the expected signs. This means that, during the post-smart-growth

Table 4. Models of land conversion in Maryland, estimated using the pooled data from eight
counties for 1992 ^ 1997 and 1997 ^ 2002.

1992 ± 1997 model 1997 ± 2002 model

Independent variables Coefficient Independent variables Coefficient

Priority Funding Area 0.828***
Rural Legacy Area ÿ0.528***

Distance to urban ÿ2.103*** Distance to urban ÿ2.726***
Distance to highway 0.003 Distance to highway ÿ0.025***
Distance to municipality ÿ0.012*** Distance to municipality 0.015***
Floodplain ÿ0.259*** Floodplain ÿ0.227***
Slope ÿ0.026*** Slope 0.082***
Difference of slopes ÿ0.074*** Difference of slopes 0.029*
Percentage of adjacent grid 0.041*** Percentage of adjacent grid 0.008***

cells urban cells urban
Population density ÿ0.066*** Population density 0.023***
Percentage of population ÿ0.004*** Percentage of population ÿ0.005***

white white
Percentage of population 0.047*** Percentage of population 0.017***

foreign-born foreign-born
Sewerage service area 0.872 Sewerage service area 0.369***

Constant ÿ2.244*** Constant ÿ1.474***
Sample size � 484 455 Sample size � 453 159
Nagelkerke R 2 � 0:317 Negelkerke R 2 � 0:215
Percentage correctly predicted � 92.9% Percentage correctly predicted � 88.4%

* Significant at the 0.05 level; *** significant at the 0.001 level.
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period, land areas designated as PFAwere more likely to be developed, whereas land areas
designated as RLA were less likely to be developed, than otherwise comparable land
outside PFAs and RLAs. If the coefficient of 0.828 for PFA is converted to odds ratio, it
will indicate that the odds of land-use change from nonurban to urban are almost 2.3 times
higher for land located within PFAs than for otherwise comparable land located outside
PFAs, everything else being constant. Likewise, if the coefficient of ÿ0:528 for RLA is
measured in terms of odds ratio, it will show that the odds of nonurban to urban
conversion for land inside RLAs are only 0.6 times as high as those for otherwise
comparable land outside RLAs. These results indicate that the smart-growth programs
have been at least partly effective in achieving their intended objectives.

As indicated by the modest goodness-of-fit measures for these two logit models,
there is a large amount of unexplained variation in the patterns of land conversion in
Maryland. Nonetheless, the estimated models present a general picture of the funda-
mental forces shaping the spatial patterns of urban development in this state during the
pre-smart-growth as well as post-smart-growth periods.

Variations in policy effectiveness among counties
To examine variations in the effectiveness of smart-growth policies among local juris-
dictions, eight pairs of logit modelsöone pair for each of the eight countiesöwere
estimated. Tables of the regression outcomes for individual counties are omitted from
this paper to save space. The results are summarized and compared below. Part of the
model interpretation is based on discussions with several planners who are highly
knowledgeable of urban-growth issues in these counties.

First, the variable PFA is positive and statistically significant for the 1997 ^ 2002
models for six of the eight counties (Anne Arundel, Baltimore, Carroll, Montgomery,
Washington, and Wicomico). This suggests that in most counties land located in priority
funding areas has a higher likelihood of development than otherwise comparable land
outside PFAs. The magnitude of the policy effect of PFAvaries among these counties, as
indicated by the different values of the coefficients. The greatest policy effect was
observed in Baltimore County, and the second greatest effect was observed in Anne
Arundel County. These results are consistent with what we saw previously in the
patterns of land-use change shown in figure 3.

Surprisingly, the smart-growth policy variable PFA is not statistically significant for
Howard and St Mary's counties. For Howard County, this result was probably due to
the fact that some of the county's zonings districts were inconsistent with PFA desig-
nations. Indeed, the zoning map of Howard County shows that a large portion of the
middle county area is designated for low-density residential development even though it
is located outside PFAs. For St Mary's County, the result probably caused by the
combination of a lack of effective local policies to restrict development in rural areas
and the inclusion of land areas that are unattractive for urban development in the
PFAs. These outcomes indicate that there were significant variations among counties
in their compliance with the smart-growth initiative.

Second, the variable RLA shows the expected negative and statistically significant
coefficients for most counties, with Anne Arundel, Washington, and Wicomico as the
exceptions. The regression outcomes indicate that, for Baltimore, Carroll, Howard,
Montgomery, and St Mary's, the RLA is effective in protecting valuable agricultural
resources. For Wicomico, the statistically insignificant coefficient is probably due to
the fact that there is only a relatively small rural legacy area in this county and/or the
demand for urban development is rather low in its rural legacy area. The coefficients for
RLA in the cases of Anne Arundel and Washington are positive, which is surprising.
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Based on our conversations with several urban planners, a plausible explanation for the
positive associations is that when the RLAs in these two counties were designated,
some of the land located inside the RLAs was already under enormous market
pressure for development.

Third, distance to nearest highway, floodplain, and sewerage are the variables with
relatively stable relationships with the dependent variables across different counties
and time periods. However, the empirical results also show considerable inconsisten-
cies in terms of the signs and levels of statistical significance of regression coefficients
for several independent variables. These variables change signs across models for the
different time periods and/or counties, suggesting that the effects of some demographic,
location, and site factors on land conversion vary across local jurisdictions.

Continuity and discontinuity in the patterns of land conversion
Does the implementation of the Smart Growth Area Act and the Rural Legacy Act
cause fundamental and drastic changes in the patterns of urban land conversion?
On the one hand, it is conceivable that the designations of the PFA and RLA largely
reflected the preexisting development patterns shaped by market forces and/or local
growth-management policies.(7) If that was the case, the smart-growth initiatives would
have largely reinforced the preexisting patterns. On the other hand, it is also possible
that the designations of PFA and RLA represented a fundamental departure from the
preexisting development patterns and caused discontinuities in the preexisting patterns
of land-use conversion.

To address this question, we added the PFA and RLA dummy variables to the
1992 ^ 97 models. To conceptually distinguish the same geographic areas for the pre-
smart-growth period from those for the post-smart-growth period, we renamed the two
dummy variables for the 1992 ^ 97 models as `area later became PFA' and `area later
became RLA'. Again, we first estimated the model for the eight counties as a group,
and then estimated the models for individual counties. The regression outcome based
on the pooled data for eight counties is shown in table 5. Several important insights
can be obtained from this estimated model.

First, the variable `area later became PFA' shows a positive and statistically sig-
nificant relationship with the dependent variable measuring the probability of land
conversion from nonurban use to urban use in the period 1992 ^ 97. In other words,
areas that were later designated as PFAs had already tended to be desirable locations
for urban growth before the Smart Growth legislation was in place. However, the
regression coefficient is only 0.402, which translates into an odds ratio of approxi-
mately 1.6. This coefficient is smaller than the 0.828 for the PFA variable for the
post-smart-growth period, which translates into an odds ratio of almost 2.3. Thus,
the data analysis demonstrates that the PFA has a relatively greater positive effect on
development probability than `area later became PFA'. The PFA designation makes
urban development more concentrated in the target areas than before.

Second, the variable `area later became RLA' shows a negative and statistically
significant effect on the probability of nonurban to urban land conversion in the period
1992 ^ 97. This means that, even in the pre-smart growth period, land located in areas that
later became RLAs was less likely to be urbanized. The result is, again, unsurprising
because the `Rural Legacy Act' was not the first policy attempt to protect Maryland's
(7) For example, the Maryland Economic Growth, Resource Protection, and Planning Act of 1992
played an important role in that it required several visions to be incorporated into county and
municipal comprehensive plans. One of the visions required development to be concentrated in
suitable areas. Some counties, notably Baltimore, Montgomery, and Washington, embraced these
visions and designated their own `suitable areas' which turned out to be highly consistent with the
state-designated PFA.
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valuable farmland, forestry, and natural and historic resources. To find out whether or not
the smart-growth program has strengthened the protection of rural-legacy areas we can
compare the regression coefficient for àrea later became RLA' with the regression
coefficient for RLA: ÿ0:258 and ÿ0:528, respectively. The corresponding odds ratios are
0.77 and 0.59, respectively, for pre-smart-growth and post-smart-growth periods. Clearly,
the `Rural Legacy Act' was effective in adding protection to designated areas.

To show that the coefficients for PFA and RLA are statistically different from
the coefficients for `area later became PFA' and `area later became RLA', we adopted the
method proposed by Gujarati (1970) to test the equality between two sets of coefficients.
We pooled the two datasets for pre-smart-growth and post-smart-growth periods and
added a dummy variable, S, to indicate if a grid cell is from the post-smart-growth
period. We generated a set of new independent variables by multiplying each indepen-
dent variable with the dummy variable. The expression of the modified logit model is
as follows:

Pi �
1

1� exp�ÿ� b0�b1X1�b2X2�:::�bkXk�g0S� g1XS1 � g2XA2 �:::� gkXSk ��
, (2)

where g0 is the differential intercept, and g1 , g2 , .::, gk are differential coefficients
indicating the differences between the slopes of the variables for post-smart and
pre-smart periods.

The test result is shown in table 6. The coefficients for PFA S and RLA S are
0.425 and ÿ0:269; respectively. Both are statistically highly significant. This means that
land located inside PFAs is more likely to be developed during the post-smart-growth
period than it was during the pre-smart-growth period. Land located inside RLAs, on
the other hand, is less likely to be developed during the post-smart-growth period than
it was during the pre-smart-growth period.

Table 5. Models of land conversion in Maryland [with `area later became Priority Funding Area
(PFA)' and `area later became Rural Legacy Area (RLA)' dummy variables].

1992 ± 1997 model 1997 ± 2002 model

Independent variables Coefficient Independent variables Coefficient

Area later became PFA 0.402*** PFA 0.828***
Area later became RLA ÿ0.258*** RLA ÿ0.528***
Distance to urban ÿ2.006*** Distance to urban ÿ2.726***
Distance to highway 0.018*** Distance to highway ÿ0.025***
Distance to municipality ÿ0.009*** Distance to municipality 0.015***
Floodplain ÿ0.271*** Floodplain ÿ0.227***
Slope ÿ0.017*** Slope 0.082***
Difference of slopes ÿ0.056*** Difference of slopes 0.029*
Percentage of adjacent grid 0.041*** Percentage of adjacent grid 0.008***

cells urban cells urban
Population density ÿ0.073*** Population density 0.023***
Percentage of population ÿ0.003*** Percentage of population ÿ0.005***

white white
Percentage of population 0.046*** Percentage of population 0.017***

foreign-born foreign-born
Sewerage service area 0.666*** Sewerage service area 0.369***

Constant ÿ2.498*** Constant ÿ1.474***
Sample size � 484 455 Sample size � 453 159
Nagelkerke R 2 � 0:320 Negelkerke R 2 � 0:215
Percentage correctly predicted � 92.9% Percentage correctly predicted � 88.4%

* Significant at the 0.05 level; ** significant at the 0.01 level; *** significant at the 0.001 level.
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To save space, we do not report the details of the estimated models with the `area
later became PFA' and `area later became RLA' variables for individual counties.
However, we would like to make several observations about the results for `area later
became PFA', which are helpful for understanding continuity and change in patterns of
land conversion in individual counties. For the majority of the counties, including
Baltimore, Carroll, Montgomery, Washington, and Wicomico, `area later became PFA'
has positive and statistically significant coefficients. Given that in the models for
1997 ^ 2002 the variable PFA also has positive (and in most cases larger) and statisti-
cally significant coefficients for these counties, one can conclude that establishing the
PFAs has reinforced, or at least sustained, the pattern of relatively concentrated urban
growth in these counties. Note that, as described earlier, Baltimore, Montgomery, and
Washington had local growth-management policies in place before the state passed the
smart-growth initiatives in 1997.

Both the `area later became PFA' and PFA variables are statistically insignificant for
Howard and St Mary's, indicating that the `Smart Growth Area Act has not been
effective for shaping growth in these two counties.

Anne Arundel County is a special case because, although in the 1992 ^ 97 model
the `area later became PFA' has a statistically significant negative relationship with the

Table 6. Differences between pre-smart-growth and post-smart-growth land conversions.

Independent variables Coefficient

Area later became Priority Funding Area (PFA) 0.402***
Area later became Rural Legacy Area (RLA) ÿ0.258***
Distance to urban ÿ2.006***
Distance to highway 0.018***
Distance to municipality ÿ0.009***
Floodplain ÿ0.271***
Slope ÿ0.017***
Difference of slopes ÿ0.056***
Percentage of adjacent grid cells urban 0.041***
Population density ÿ0.073***
Percentage of population white ÿ0.003***
Percentage of population foreign-born 0.046***
Sewerage service area 0.666***
Differential intercept 1.024***
PFA S 0.425***
RLA S ÿ0.269***
Distance to urban S ÿ0.719***
Distance to highway S ÿ0.043***
Distance to municipality S 0.025***
Floodplain S ÿ0.044
Slope S 0.099***
Difference of slopes S 0.084***
Percentage of adjacent grid cells urban S ÿ0.033***
Population density S 0.096***
Percentage of population white S ÿ0.002**
Percentage of population foreign-born S ÿ0.029***
Sewerage service area S ÿ0.297***
Constant ÿ2.498***
Sample size � 937 614
Nagelkerke R 2 � 0:269
Percentage correctly predicted � 90.7%

** Significant at the 0.01 level; *** significant at the 0.001 level.
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dependent variable, in the 1997 ^ 2002 model the PFA has a statistically significant
positive relationship with the dependent variable. This discontinuity in the pattern of
land conversion suggests that the `Smart Growth Area Act' has generated highly
effective outcomes in Anne Arundel, where the previously dispersed pattern of devel-
opment has become concentrated in the PFAs for the post-smart-growth years, as
shown previously in figure 3.

Conclusion
Our logit models of land conversion in Maryland have shown that the State's Smart
Growth Area Act and Rural Legacy Act have generally been successful in achieving
their policy objectives. Although areas now designated as PFA had been the locations
for much of the urban growth during the pre-smart-growth years, the 1997 legislation
and its programs reinforced the pattern of relatively concentrated development. Like-
wise, the 1997 Rural Legacy Act reinforced the preexisting tradition of protecting the
state's valuable farmland, forestry, and natural and historic resources.

The effectiveness of the Smart Growth Area Act and the Rural Legacy Act varies
across the counties, however. Although the empirical evidence we have gathered is
somewhat limited, our models of land conversion show that smart-growth policies
have reinforced the relatively compact patterns of urban growth in counties that have
a strong tradition of managing growth, and have drastically changed spatial distribu-
tion of land conversion in some of the counties where the preexisting patterns of urban
development were spatially highly scattered. But the policies may not have a significant
effect on other counties. These results provide important insights about the significance
of local physical, socioeconomic, and political environments in influencing the pace
and patterns of urban development.

Planners and policymakers must pay close attention to these interjurisdictional
differences in the effectiveness of smart-growth programs, examine the likely causes
and consequences, and formulate strategies for improvement. Our findings imply that it is
important to establish collaboration between state and local governments in designing and
implementing smart-growth policies.

We have so far focused on examining the effectiveness of two important smart-
growth programs in achieving their stated objectives. Future research should investigate
the economic efficiency, social equity, and environmental sustainability implications of
alternative patterns of urban growth, issues which remain the primary focus of debate
over smart growth.
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