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Abstract: This target article presents a new computational theory of explanatory coherence that applies to the acceptance and 
rejection of scientific hypotheses as well as to reasoning in everyday life. The theory consists of seven principles that establish 
relations oflocal coherence between a hypothesis and other propositions. A hypothesis coheres with propositions that it explains, or 
that explain it, or that participate with it in explaining other propositions, or that offer analogous explanations. Propositions are 
incoherent with each other if they arc contradictory. Propositions that describe the results of observation have a degree of 
acceptability on their own. An explanatory hypothesis is ac-ccptcd if it coheres better overall than its competitors. The power of the 
seven principles is shown by their implementation in a connectionist program called ECHO, which treats hypothesis evaluation as a 
constraint satisfaction problem. Inputs about the explanatory relations arc used to create a network of units representing 
propositions, while coherence and incoherence relations are encoded by excitatory and inhibitory links. ECHO provides an algorithm 
for smoothly integrating theory evaluation based on considerations of explanatory breadth, simplicity, and analogy. It has been 
applied to such important scientific cases as Lavoisier's argument for oxygen against the phlogiston theory and Darwin's argument for 
evolution against creationism, and also to cases oflcgal reasoning. The theory of explanatory coherence has implications for artificial 
intelligence, psychology, and philosophy. 
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1. Introduction 

Why did the oxygen theory of combustion supersede the 
phlogiston theory? Why is Darwin's theory of evolution 
by natural selection superior to creationism? How can a 
jury in a murder trial decide between conflicting views of 
what happened? This target article develops a theory of 
explanatory coherence that applies to the evaluation of 
competing hypotheses in cases such as these. The theory 
is implemented in a connectionist computer program 
with many interesting properties. 

The problem of inference to explanatory hypotheses 
has a long history in philosophy and a much shorter one in 
psychology and artificial intelligence (AI). Scientists and 
philosophers have long considered the evaluation of theo­
ries on the basis of their explanatory power. In the late 
nineteenth century, Peirce discussed two forms of in­
ference to explanatory hypotheses: hypothesis, which 
involved the acceptance of hypotheses, and abduction, 
which involved merely the initial formation of hypotheses 
(Peirce 1931-1958; Thagard 1988a). Researchers in ar­
tificial intelligence and some philosophers have used the 
term "abduction" to refer to both the formation and the 
evaluation of hypotheses. AI work on this kind of in­
ference has concerned such diverse topics as medical 
diagnosis Gosephson et al. 1987; Pople 1977; Reggia et al. 
1983) and natural language interpretation (Charniak & 
McDermott 1985; Hobbs et al. 1988). In philosophy, the 
acceptance of explanatory hypotheses is usually called 
inference to the best explanation (Harman 1973; 1986). In 
social psychology, attribution theory considers how peo­
ple in everyday life form hypotheses to explain events 
(Fiske & Taylor 1984). Recently, Pennington and Hastie 
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(1986; HJ87) have proposed that much of jury decision 
making can be best understood in terms of explanatory 
coherence. For example, to gain a conviction of first­
degree murder, the prosecution must convince the jury 
that the accused had a preformed intention to kill the 
victim. Pennington and Hastie argue that whether the 
jury will believe this depends on the explanatory co­
herence of the prosecution's story compared to the story 
presented by the defense. 

Actual cases of scientific and legal reasoning suggest a 
variety of factors that go into determining the explanatory 
coherence of a hypothesis. How much does the hypoth­
esis explain? Are its explanations economical? Is the 
hypothesis similar to ones that explain similar phe­
nomena? Is there an explanation of why the hypothesis 
might be true? In legal reasoning, the question of explain­
ing the hypothesis usually concerns motives: If we are 
trying to explain the evidence by supposing that the 
accused murdered the victim, we will find the supposi­
tion more plausible if we can think of reasons why the 
accused was motivated to kill the victim. Finally, on all 
these dimensions, how does the hypothesis compare 

. against alternative hypotheses? 
This paper presents a theory of explanatory coherence 

that is intended to account for a wide range of explanatory 
inferences. I shall propose seven principles of explanato­
ry coherence that encompass the considerations just 
described and that suffice to make judgments of explana­
tory coherence. Their sufficiency is shown by the imple­
mentation of the theory in a connectionist computer 
program called ECHO that has been applied to more than a 
dozen complex cases of scientific and legal reasoning. My 
account of explanatory coherence thus has three parts: 
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the statement of a theory, the description of an algorithm, 
and applications to diverse examples that show the feasi­
bility of the algorithm and help to demonstrate the power 
of the theory (cf. Marr 1982). Finally, I shall discuss the 
implications of the theory for artificial intelligence, psy­
chology, and philosophy. 

2. A theory of explanatory coherence 

2.1. Coherence and explanatlon. Before presenting the 
theory, it will be useful to make some general points 
about the concepts of coherence and explanation, al­
though it should be made clear that this paper does not 
purport to give a general account of either concept. The 
question of the nature of explanation is extremely difficult 
and controversial. Philosophers disagree about whether 
explanation is primarily deductive (Hempel 1965), statis­
tical (Salmon 1970), causal (Salmon 1984), linguistic 
(Achinstein 1983), or pragmatic (van Fraassen 1980). In 
AI, explanation is sometimes thought of as deduction 
(Mitchell et al. 1986) and sometimes as pattern instantia­
tion (Schank 1986). This paper does not pretend to offer a 
theory of explanation, but is compatible with any of the 
foregoing accounts (except van Fraassen's, which is 
intended to make explanation irrelevant to questions of 
acceptability and truth). 

Nor does this paper give a general account of co­
herence. There are various notions of coherence in the 
literatures of different fields. We can distinguish at least 
the following: 

Deductive coherence depends on relations of logical 
consistency and entailment among members of a set of 
propositions. 

Probabilistic coherence depends on a set of proposi­
tions having probability assignments consistent with the 
axioms of probability. 

Semantic coherence depends on propositions having 
similar meanings. 
BonJour (1985) provides an interesting survey of philo­
sophical ideas about coherence. Here, I am only offering 
a theory of explanatory coherence. 

Explanatory coherence can he understood in several 
different ways, as 

(a) a relation between two propositions, 
(b) a property of a whole set of related propositions, or 
(c) a property of a single proposition. 

I claim that (a) is fundamental, with (b) depending on (a), 
and (c) depending on (b). That is, explanatory coherence 
is primarily a relation between two propositions, but we 
can speak derivatively of the explanatory coherence of a 
set of propositions as determined by their pairnrise co­
herence, and we can speak derivatively of the explanatory 
coherence of a single proposition with respect to a set of 
propositions whose coherence has been established. A 
major requirement of an account of explanatory co­
herence is that it show how it is possible to move from (a) 
to (b) to (c); algorithms for doing so are presented as part of 
the computational model described below. 

Because the notion of the explanatory coherence of an 
individual proposition is so derivative and depends on a 
specification of the set of propositions with which it is 
supposed to cohere, I shall from now on avoid treating 
coherence as a property of individual propositions. ln-
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stead, we can speak of the acceptability of a proposition, 
which depends on but is detachable from the explanatory 
coherence of the set of propositions to which it belongs. 
We should accept propositions that are coherent with our 
other beliefs, reject propositions that are incoherent with 
our other beliefs, and be neutral toward propositions that 
are neither coherent nor incoherent. Acceptability has 
finer gradations than just acceptance, rejection, and neu­
trality, however: The greater the coherence of a proposi­
tion with other propositions, the greater its acceptability. 

In ordinary language, to cohere is to hold together, and 
explanatory coherence is a holding together because of 
explanatory relations. We can, accordingly, start with a 
vague characterization: 

Propositions P and Q cohere if there is some explanatory 
relation between them. 

To fill this statement out, we must specify what the 
explanatory relation might be. I see four possibilities: 

(1) P is part of the explanation of Q. 
(2) Q is part of the explanation of P. 
(3) P and Qare together part of the explanation of some 

R. 
(4) P and Q are analogous in the explanations they 

respectively give of some R and S. 
This characterization leaves open the possibility that two 
propositions can cohere for nonexplanatory reasons: de­
ductive, probabilistic, or semantic. Explanation is thus 
sufficient but not necessary for coherence. I have taken 
"explanation" and "explain" as primitives, while assert­
ing that a relation of explanatory coherence holds be­
tween P and Q ifand only ifone or more of(l)~(4) is true. 
Incoherence between two propositions occurs if they 
contradict each other or if they offer explanations that 
background knowledge suggests are incompatible. 

The psychological relevance of explanatory coherence 
comes from the following general predictions concerning 
the acceptance of individual propositions: 

If a proposition is highly coherent with the beliefs of a 
person, then the person will believe the proposition with 
a high degree of confidence. 

If a proposition is incoherent with the beliefs of a 
person, then the person will not believe the proposition. 
The applicability of this to several areas of psychological 
experimentation is discussed in section 9. 

2.2. Principles of explanatory coherence. I now propose 
seven principles that establish relations of explanatory 
coherence and make possible an assessment of the global 
coherence of an explanatory system S. S consists of 
propositions P, Q, and P 1 . . P

11
• Local coherence is a 

relation between two propositions. I coin the term "in­
cohere" to mean more than just that two propositions do 
not cohere: To incohere is to resist holding together. The 
principles are as follows: 
Principle I. Symmetry. 

(a) If P and Q cohere, then Q and P cohere. 
(b) If P and Q incohere, then Q and P incohere. 

Principle 2. Explanation. 

If P1 ... Pm explain Q, then: 
(a) For each Pi in P1 ... Pm, Pi and Q cohere. 
(b) For each Pi and Pi in P 1 ... Pm' Pi and P; cohere. 



(c) In (a) and (b), the degree of coherence is inversely propor­
tional to the number of propositions P 1 ... Pm. 

Princip/,e 3. Analogy. 

(a) If P1 explains Q 1, P2 explains Q2 , P1 is analogous to P2 , 

and Q 1 is analogous to Q2 , then P1 and P2 cohere, and Q 1 and Q2 

cohere. 
(b) If P1 explains Q1, P2 explains Q2 , Q 1 is analogous to Q2 , 

but PI is disanalogous to P 2, then PI and P 2 incohere. 

Principle 4. Data Priority. 

Propositions that describe the results of observation have a 
degree of acceptability on their own. 

Princip/,e 5. Contradiction. 

If P contradicts Q, then P and Q inc..-ohere. 

Principle 6. Acceptability. 

(a) The acceptability of a proposition Pin a system S depends 
on its coherence with the proposition in S. 

(b) If many results of relevant experimental observations are 
unexplained, then the acceptability of a proposition P that 
explains only a few of them is reduced. 

Principle 7. System Coherence. 

The global explanatory coherence of a system S of proposi­
tions is a function of the pairwise local coherence of those 
propositions. 

2.3. Discussion of the principles. Principle 1, Symmetry, 
asserts that pairwise coherence and incoherence are sym­
metric relations, in keeping with the everyday sense of 
coherence as holding together. The coherence of two 
propositions is thus very different from the nonsymmetric 
relations of entailment and conditional probability. Typ­
ically, P entails Q without Q entailing P, and the condi­
tional probability of P given Q is different from the 
probability ofQ given P. But if P and Q hold together, so 
do Q and P. The use of a symmetrical relation has 
advantages that will become clearer in the discussion of 
the connectionist implementation below. 

Principle 2, Explanation, is by far the most important 
for assessing explanatory coherence, because it estab­
lishes most of the coherence relations. Part (a) is the most 
obvious: If a hypothesis P is part of the explanation of a 
piece of evidence Q, then P and Q cohere. Moreover, if a 
hypothesis P2 is explained by another hypothesis P 1, then 
P1 and P2 cohere. Part (a) presupposes that explanation is 
a more restrictive relation than deductive implication, 
because otherwise we could prove that any two proposi­
tions cohere; for unless we use a relevance logic (Ander­
son & Belnap 1975), P1 and the contradiction P2 & not-P 2 
imply any Q, so it would follow that P I coheres with Q. It 
follows from Principle 2(a), in conjunction with Principle 
6, that the more a hypothesis explains, the more coherent 
and hence acceptable it is. Thus, this principle subsumes 
the criterion of explanatory breadth (which Whewell, 
1967, called "consilience") that I have elsewhere claimed 
to be the most important for selecting the best explana­
tion (Thagard 1978; 1988a). 

Whereas part (a) of Principle 2 says that what explains 
coheres with what is explained, part (b) states that two 
propositions cohere if together they provide an explana­
tion. Behind part (b) is the Duhem-Quine idea that the 
evaluation of a hypothesis depends partly on the other 
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hypotheses with which it furnishes explanations (Duhem 
1954; Quine 1961; see section 10.1). l call two hypotheses 
that are used together in an explanation "cohypotheses." 
Again I assume that explanation is more restrictive than 
implication; otherwise it would follow that any proposi­
tion that explained something was coherent with every 
other proposition, because if P I implies Q, then so does 
P 1 & P 2 . But any scientist who maintained at a conference 
that the theory of general relativity and today's baseball 
scores together explain the motion of planets would be 
laughed off the podium. Principle 2 is intended to apply 
to explanations and hypotheses actually proposed by 
scientists. 

Part (c) of Principle 2 embodies the claim that if 
numerous propositions are needed to furnish an explana­
tion, then the coherence of the explaining propositions 
with each other and with what is explained is thereby 
diminished. Scientists tend to be skeptical of hypotheses 
that require myriad ad hoc assumptions in their explana­
tions. There is nothing wrong in principle in having 
explanations that draw on many assumptions, but we 
should prefer theories that generate explanations using a 
unified core of hypotheses. I have elsewhere contended 
that the notion of simplicity most appropriate for scientific 
theory choice is a comparative one preferring theories 
that make fewer special assumptions (Thagard 1978; 
1988a). Principles 2(b) and 2(c) together subsume this 
criterion. I shall not attempt further to characterize 
"degree of coherence" here, but the connectionist al­
gorithm described below provides a natural interpreta­
tion. Many other notions of simplicity have been pro­
posed (e.g., Foster & Martin 1966; Harman et al. 1988), 
but none is so directly relevant to considerations of 
explanatory coherence as the one embodied in Principle 
2. 

The third criterion for the best explanation in my 
earlier account was analogy, and this is subsumed in 
Principle 3. There is controversy about whether analogy 
is of more than heuristic use, but scientists such as 
Darwin have used analogies to defend their theories; his 
argument for evolution by natural selection is analyzed 
below. Principle 3(a) does not say simply that any two 
analogous propositions cohere. There must be an explan­
atory analogy, with two analogous propositions occurring 
in explanations of two other propositions that are analo­
gous to each other. Recent computational models of 
analogical mapping and retrieval show how such corre­
spondences can be noticed (Holyoak & Thagard, in press; 
Thagard et al. 1989). Principle 3(b) says that when similar 
phenomena are explained by dissimilar hypotheses, the 
hypotheses incohcrc. Although the use of such dis­
analogies is not as common as the use of analogies, it was 
important in the reasoning that led Einstein (1952) to the 
special theory of relativity: He was bothered by asymme­
tries in the way Maxwell's electrodynamics treated the 
case of(l) a magnet in motion and a conductor at rest quite 
differently from the case of (2) a magnet at rest and a 
conductor in motion. -

Principle 4, Data Priority, stands much in need of 
elucidation and defense. In saying that a proposition 
describing the results of observation has a degree of 
acceptability on its own, I am not suggesting that it is 
indubitable, but only that it can stand on its own more 
successfully than can a hypothesis whose sole justification 
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is what it explains. A proposition Q may have some 
independent acceptability and still end up not accepted, 
if it is only coherent with propositions that are themselves 
not acceptable. 

From the point of view of explanatory coherence alone, 
we should not take propositions based on observation as 
independently acceptable without any explanatory rela­
tions to other propositions. As BonJour (1985) argues, the 
coherence of such propositions is of a nonexplanatory 
kind, based on background knowledge that observations 
of certain sorts are very likely to be true. From past 
experience, we know that our observations are very likely 
to be true, so we should believe them unless there is 
substantial reason not to. Similarly, at a very different 
level, we have some confidence in the reliability of 
descriptions of experimental results in carefully refereed 
scientific journals. Section 10.4 relates the question of 
data priority to current philosophical disputes about 
justification. 

Principle 5, Contradiction, is straightforward. By "con­
tradictory" here I mean not just syntactic contradictions 
like P & not-P, but also semantic contradictions such as 
"This ball is black all over" and "This ball is white all 
over." In scientific cases, contradiction becomes impor­
tant when incompatible hypotheses compete to explain 
the same evidence. Not all competing hypotheses in­
cohere, however, because many phenomena have multi­
ple causes. For example, explanations of why someone 
has certain medical symptoms may involve hypotheses 
that the patient has various diseases, and it is possible that 
more than one disease is present. Competing hypotheses 
incohere if they are contradictory or if they are framed as 
offering the most likely cause of a phenomenon. In the 
latter case, we get a kind of pragmatic contradictoriness: 
Two hypotheses may not be syntactically or semantically 
contradictory, yet scientists will view them as contradic­
tory because of background beliefs suggesting that only 
one of the hypotheses is acceptable. For example, in the 
debate over dinosaur extinction (Thagard 1988b), scien­
tists generally treat as contradictory the following 
hypotheses: 

(1) Dinosaurs became extinct because of a meteorite 
collision. 

(2) Dinosaurs became extinct because the sea level 
fell. 
Logically, (1) and (2) could both be true, but scientists 
treat them as conflicting explanations, possibly because 
there are no explanatory relations between them and 
their conjunction is unlikely. 

The relation "cohere" is not transitive. If P1 and P2 
together explain Q, while P1 and P 3 together explain not­
Q, then P1 coheres with both Q and not-Q, which 
incohere. Such cases do occur in science. Let PI be the 
gas law that volume is proportional to temperature, P 2 a 
proposition describing the drop in temperature of a 
particular sample of gas, P 3 a proposition describing the 
rise in temperature of the sample, and Q a proposition 
about increases in the sample's volume. Then P1 and P2 
together explain a decrease in the volume, while P1 and 
P 3 explain an increase. 

Principle 6, Acceptability, proposes in part (a) that we 
can make sense of the overall coherence of a proposition 
in an explanatory system just from the pairwise coherence 
relations established by Principles 1-5. If we have a 
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hypothesis P that coheres with evidence Q by virtue of 
explaining it, but incoheres with another contradictory 
hypothesis, should we accept P? To decide, we cannot 
merely count the number of propositions with which P 
coheres and incoheres, because the acceptability of P 
depends in part on the acceptability of those propositions 
themselves. We need a dynamic and parallel method of 
deriving general coherence from particular coherence 
relations; such a method is provided by the connectionist 
program described below. 

Principle 6(b), reducing the acceptability of a hypoth­
esis when much of the relevant evidence is unexplained 
by any hypothesis, is intended to handle cases where the 
best available hypothesis is still not very good, in that it 
accounts for only a fraction of the available evidence. 
Consider, for example, a theory in economics that could 
explain the stock market crashes ofl929 and 1987 but that 
had nothing to say about myriad other similar economic 
events. Even if the theory gave the best available account 
of the two crashes, we would not be willing to elevate it to 
an accepted part of general economic theory. What does 
"relevant" mean here? [See BBS multiple book review of 
Sperber & Wilson's Relevance, BBS 10(4) 1987.] As a first 
approximation, we can say that a piece of evidence is 
directly relevant to a hypothesis if the evidence is ex­
plained by it or by one of its competitors. We can then add 
that a piece of evidence is relevant ifit is directly relevant 
or if it is similar to evidence that is relevant, where 
similarity is a matter of dealing with phenomena of the 
same kind. Thus, a theory of the business cycle that 
applies to the stock market crashes of 1929 and 1987 
should also have something to say about nineteenth­
century crashes and major business downturns in the 
twentieth century. 

The final principle, System Coherence, proposes that 
we can have some global measure of the coherence of a 
whole system of propositions. Principles 1-5 imply that, 
other things being equal, a system S will tend to have 
more global coherence than another if 

(1) S has more data in it; 
(2) S has more internal explanatory links between 

propositions that cohere because of explanations and 
analogies; and 

(3) S succeeds in separating coherent subsystems of 
propositions from conflicting subsystems. 
The connectionist algorithm described below comes with 
a natural measure of global system coherence. It also 
indicates how different priorities can be given to the 
different principles. 

3. Connectionist models 

To introduce connectionist techniques, I shall briefly 
describe the popular example of how a network can be 
used to understand the Necker cube phenomenon (see, 
for example, Feldman & Ballard 1982; Rumelhart et al. 
1986). Figure 1 contains a reversing cube: By changing 
our focus of attention, we are able to see as the front either 
face ABCD or face EFGH. The cube is perceived holis­
tically, in that we are incapable of seeing corner A at the 
front without seeing corners B, C, and D at the front as 
well. 

We can easily construct a simple network with the 
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Figure 1. The Necker cube. Either ABCD or EFGH can be 
perceived as the front. 

desired holistic property using units, crudely analogous 
to neurons, connected by links. Let Af be a unit that 
represents the hypothesis that corner A is at the front, 
while Ab represents the hypothesis that corner A is at the 
back. Similarly, we construct units Bf, Bb, Cf, Cb, Df, 
Db, Ef, Eb, Ff, Fb, Cf, Cb, Hf, and Hb. These units are 
not independent of each other. To signify that A cannot be 
both at the front and at the back, we construct an 
inhibitory link between the units Af and Ab, with similar 
links inhibiting Bf and Bb, and so on. Because corners A, 
B, C, and D go together, we construct excitatory links 
between each pair of Af, Bf, Cf, and Df, and between each 
pair of Ab, Bb, Cb, and Db. Analogous inhibitory and 
excitatory links are then set up for E, F, C, and H. In 
addition, we need inhibitory links between Af and Ef, Bf 
and Ff, and so on. Part of the resulting network is 
depicted in Figure 2. I have used solid lines to indicate 
excitatory links, and dotted lines to indicate inhibitory 
links. 

Units can have varying degrees of activation. Suppose 
that our attention is focused on corner A, which we 
assume to be at the front, so that unit Af is activated. Then 
by virtue of the excitatory links from Af to Bf, Cf, and Of, 
these units will be activated. The inhibitory links from Af 
to Ab and Ef will cause those units to be deactivated. In 
turn, the excitatory links from Ab to Bb, Cb, and Db will 

Bf Cf Df Eb ----- Ef Db Cb Bb ---.......... -........ __ _ ...... .. .... .... .. .. --- -----
--

Figure 2. A connectionist network for interpreting the cube. 
Afis a unit representing the hypothesis that A is at the front, 
whereas Ab represents the hypothesis that A is at the back. Solid 
lines represent excitatory links; dotted lines represent inhibito­
ry links. 

Thagard: Explanatory coherence 

deactivate them. Thus activation will spread through the 
network until all the units corresponding to the view that 
A, B, C, and Dare at the front are activated, while all the 
units corresponding to the view that E, F, G, and Hare at 
the front are deactivated. 

Goldman has pointed out some of the attractive epis­
temological properties of this sort of network (Goldman 
1986, Chap. 15: see also Thagard, in press a). A proposi­
tion, represented by a unit, is accepted if it is part of the 
best competing coalition of units and its rivals are re­
jected. Uncertainty consists in the absence of a clear-cut 
winner. Goldman argues that the connectionist view that 
has units representing propositions settling into either on 
or off states is more psychologically plausible and epis­
temologically appealing than the Bayesian picture that 
assigns probabilities to propositions. 

4. ECHO 

4.1, The program. Let us now look at ECHO, a computer 
program written in Common LISP that is a straightfmward 
application of connectionist algorithms to the problem of 
explanatory coherence. In ECHO, propositions represent­
ing hypotheses and results of observation are represented 
by units. Whenever Principles 1-5 state that two proposi­
tions cohere, an excitatory link between them is estab­
lished. If two propositions incohere, an inhibitory link 
between them is established. In ECHO, these links are 
symmetric, as Principle 1 suggests: The weight from unit 
1 to unit 2 is the same as the weight from unit 2 to unit 1. 
Principle 2(c) says that the larger the number of proposi­
tions used in an explanation, the smaller the degree of 
coherence between each pair of propositions. ECHO 

therefore counts the propositions that do the explaining 
and proportionately lowers the weight of the excitatory 
links between units representing coherent propositions. 

Principle 4, Data Priority, is implemented by links to 
each data unit from a special evidence unit that always has 
activation 1, giving each unit some acceptability on its 
own. When the network is run, activation spreads from 
the special unit to the data units, and then to the units 
representing explanatory hypotheses. The extent of data 
priority - the presumed acceptability of data propositions 
- depends on the weight of the link between the special 
unit and the data units. The higher this weight, the more 
immune the data units become to deactivation by other 
units. Units that have inhibitory links between them 
because they represent contradictory hypotheses have to 
compete with each other for the activation spreading from 
the data units: The activation of one of these units will 
tend to suppress the activation of the other. Excitatory 
links have positive weights; best performance occurs with 
weights around . 05. Inhibitory links have negative 
weights; best performance occurs with weights around 
- .2. The activation of units ranges between 1 and -1; 
positive activation can be interpreted as acceptance of the 
proposition represented by the unit, negative activation 
as rejection, and activation close to Oas neutrality. The 
relation between acceptability and probability is dis­
cussed in section 10.2. 

To summarize how ECHO implements the principles of 
explanatory coherence, we can list key terms from the 
principles with the corresponding terms from ECHO: 
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Proposition: unit 
Coherence: excitatory link, with positive weight 
Incoherence: inhibitory link, with negative weight 
Data priority: excitatory link from special unit 
Acceptability: activation 
System coherence: See the function H defined in 

section 4. 9 below. 
The following are some examples of the LISP formulas 

that constitute ECHo·s inputs (I omit LISP quote symbols; 
see Tables 1-4 for actual input): 

1. (EXPLAIN (Hl H2) El) 
2. (EXPLAIN (Hl H2 H3) E2) 
3. (ANALOGOUS (H5 H6) (E5 E6)) 
4. (DATA (El E2 E5 E6)) 
5. (CONTRADICT Hl H4) 

Formula 1 says that hypotheses Hl and H2 together 
explain evidence E 1. As suggested by the second princi­
ple of explanatory coherence proposed above, formula 1 
sets up three excitatory links, between units representing 
Hl and El, H2 and El, and Hl and H2. 1 Formula 2 sets 
up six such links, between each of the hypotheses and the 
evidence, and between each pair of hypotheses, but the 
weight on the links will be less than those established by 
formula 1, because there are more cohypotheses. In 
accord with Principle 3(a), Analogy, formula 3 produces 
excitatory links between H5 and H6, and between E5 and 
E6, if previous input has established that H5 explains E5 
and H6 explains E6. Formula 4 is used to apply Principle 
4, Data Priority, setting up explanation-independent 
excitatory links to each data unit from a special evidence 
unit. Finally, formula 5 sets up an inhibitory link between 
the contradictory hypotheses Hl and H4, as prescribed 
by Principle 5. A full specification of ECHO' s inputs and 
algorithms is provided in the Appendix. 

Input to ECHO can optionally reflect the fact that not all 
data and explanations are of equal merit. For example, a 
data statement can have the form 

(DATA (El (E 2.8))). 

This formula sets up the standard link from the special 
unit to El, but interprets the ".8" as indicating that E2 is 
not as reliable a piece of evidence as El. Hence, the 
weight from the special unit to E2 is only . 8 as strong as 
the weight from the special unit to El. Similarly, explain 
statements take an optimal numerical parameter, as in 

(EXPLAIN (Hl) E 1. 9). 

The additional parameter, . 9, indicates some weakness in 
the quality of the explanation and results in a lower than 
standard weight on the excitatory link between Hl and 
El. In ECHo's applications to date, the additional param­
eters for data and explanation quality have not been used, 
because it is difficult to establish them objectively from 
the texts we have been using to generate ECHo' s inputs. 
But it is important that ECHO has the capacity to make use 
of judgments of data and explanation quality when these 
are available. 

Program runs show that the networks thus established 
have numerous desirable properties. Other things being 
equal, activation accrues to units corresponding to hy­
potheses that explain more, provide simpler explana­
tions, and are analogous to other explanatory hypotheses. 
The considerations of explanatory breadth, simplicity, 
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and analogy are smoothly integrated. The networks are 
holistic, in that the activation of every unit can potentially 
have an effect on every other unit linked to it by a path, 
however lengthy. Nevertheless, the activation of a unit is 
directly affected only by those units to which it is linked. 
Although complexes of coherent propositions are evalu­
ated together, different hypotheses in a complex can 
finish with different activations, depending on their par­
ticular coherence relations. The symmetry of excitatory 
links means that active units tend to bring up the activa­
tion of units with which they are linked, whereas units 
whose activation sinks below O tend to bring down the 
activation of units to which they are linked. Data units are 
given priority, but can nevertheless be deactivated if they 
are linked to units that become deactivated. So long as 
excitation is not set too high (see section 12.2), the 
networks set up by ECHO are stable: In most of them, all 
units reach asymptotic activation levels after fewer than 
100 cycles of updating. The most complex network imple­
mented so far, comparing the explanatory power of 
Copernicus's heliocentric theory with Ptolemy's geo­
centric one, requires about 210 cycles before its more 
than 150 units have all settled. To illustrate ECHO' s 
capabilities, I shall describe some very simple tests that 
illustrate its ability to handle considerations of explanato­
ry breadth, simplicity, and analogy. Later sections on 
scientific and legal reasoning provide more complex and 
realistic examples. 

4.2. Explanatory breadth. We should normally prefer a 
hypothesis that explains more than alternative hypoth­
eses. If hypothesis Hl explains two pieces of evidence, 
whereas H2 explains only one, then Hl should be pre­
ferred to H2. Here are four formulas given together to 
ECHO as input: 

(EXPLAIN (Hl) El) 
(EXPLAIN (Hl) E2) 
(EXPLAIN (H2) E2) 
(CONTRADICT (Hl H2)) 
(DATA (El E2)) 

These formulas generate the network pictured in Figure 
3, with excitatory links corresponding to coherence rep­
resented by solid lines, and with inhibitory links corre­
sponding to incoherence represented by dotted lines. 

Hl ------- H2 

I\/ 
El E2 

V 
SPECIAL 

Figure 3. Explanatory breadth. As in Figure 2, sohd Jines 
represent excitatory Jinks, whereas dotted line represents in­
hibitory Jinks. Evidence units El and E2 are Jinked to the 
special unit. The result of running this network is that Hl 
defeats H2. 
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Activation flows from the special unit, whose activation is 
clamped at 1, to the evidence units, and then to the 
hypothesis units, which inhibit each other. Because Hl 
explains more than its competitor H2, Hl becomes ac­
tive, settling with activation above 0, while H2 is deacti­
vated, settling with activation below 0. (See section 4.10 
for a discussion of the parameters that affect the runs, and 
the Appendix for sensitivity analyses.) Notice that al­
though the links in ECHO are symmetric, in keeping with 
the symmetry of the coherence relation, the flow of 
activation is not, because evidence units get activation 
first and then pass it along to what explains them. 

ECHO's networks have interesting dynamic properties. 
What happens if new data come in after the network has 
settled? When ECHO is given the further information that 
H2 explains additional data E3, E4, and ES, then the 
network resettles into a reversed state in which H2 is 
activated and Hl is deactivated. However, if the addi­
tional information is only that H2 explains E2, or only that 
H2 explains E3, then ECHO does not resettle into a state 
in which H 1 and H2 get equal activation. (It does give H 1 
and H2 equal activation if the input says that they have 
equal explanatory power from the start.) Thus ECHO 

displays a kind of conservatism also seen in human scien­
tists. See the discussion of conservatism in section 10.4. 

4.3. Being explained. Section 4.2 showed how Principle 
2(a) leads ECHO to prefer a hypothesis that explains more 
than its competitors. The same principle also implies 
greater coherence, other things being equal, for a hy­
pothesis that is explained. Consider the following input: 

(EXPLAIN (Hl) El) 
(EXPLAIN (Hl) E2) 
(EXPLAIN (H2) El) 
(EXPLAIN (H2) E2) 
(EXPLAIN (H3) Hl) 
(CONTRADICT Hl H2) 
(DATA (El E2)) 

Figure 4 depicts the network constructed using this 
input. Here, and in all subsequent figures, the special 
evidence unit is not shown. In Figure 4, Hl and H2 have 
the same explanatory breadth, but ECHO activates Hl and 
deactivates H2 because H 1 is explained by H3. ECHO 

thus gives more activation to a hypothesis that is ex-

r 
El E2 

Figure 4. Being explained. Hl defeats H2 because it is ex­
plained by H3. 
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plained than to a contradictory one that is not explained. 
If the above formulas did not include a CONTRADICT 
statement, then no inhibitory links would be formed, so 
that all units would asymptote with positive activation. 
Because of the decay parameter, activation is still less 
than 1: See the equations in the Appendix. 

4.4. Refutation. According to Popper (1959), the hallmark 
of science is not the acceptance of explanatory theories 
but the rejection of falsified ones. Take the simplest case 
where a hypothesis Hl explains (predicts) some piece of 
"negative evidence" NEl, which contradicts data EL 
Then El becomes active, deactivating NEl and hence 
Hl. Such straightforward refutations, however, are rare 
in science. Scientists do not typically give up a promising 
theory just because it has some empirical problems, and 
neither does ECHO. If in addition to explaining NEl, Hl 
explains some positive pieces of evidence, E2 and E3, 
then ECHO does not deactivate it. However, an alter­
native hypothesis H2 that also explains E2 and E3 is 
preferred to Hl, which loses because ofNEl. Rejection 
in science is usually a complex process involving compet­
ing hypothesis, not a simple matter of falsification 
(Lakatos 1970; Thagard 1988a, Chap. 9; section 10.1 
below). 

4.~. Unification. The impact of explanatory breadth, being 
explained, and refutation all arise from Principle 2(a), 
which says that hypotheses cohere with what they ex­
plain. According to Principle 2(b), cohypotheses that 
explain together cohere with each other. Thus, ifHl and 
H2 together explain evidence E, then Hl and H2 are 
linked. This gives ECHO a preference for unified explana­
tions, ones that use a common set of hypotheses rather 
than having special hypotheses for each piece of evidence 
explained. Consider this input, which generates the net­
work shown in Figure 5: 

(EXPLAIN (Hl Al) El) 
(EXPLAIN (Hl A2) E2) 
(EXPLAIN (H2 A3) El) 
(EXPLAIN (H2 A3) E2) 
(CONTRADICT Hl H2) 
(DATA (El E2)) 

Although H 1 and H2 both explain E 1 and E2, the 
explanation by H2 is more unified in that it uses A3 in 
both cases. Hence ECHO forms a stronger link between 
H2 and A3 than it does between Hl and Al or A2, so H2 
becomes activated and Hl is deactivated. The explana­
tions by H2 are not simpler than those by Hl, in the sense 

El E2 

Figure 5. Unification. H2 defeats Hl because it gives a more 
unified explanation of the evidence. 
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Hl - - - - - - - H2 

El 

Figure 6. Simplicity. Hl defeats H2 because it gives a simpler 
explanation of the evidence. 

of Principle 2(c), because both involve two hypotheses. 
ECHO's preference for H2 over Hl thus depends on the 
coherence of H2 with its auxiliary hypothesis and the 
evidence being greater than the coherence of Hl with its 
auxiliary hypotheses and the evidence. One might argue 
that the coherence between cohypotheses should be less 
than the coherence of a hypothesis with what it explains: 
ECHO contains a parameter that can allow the weights 
between cohypothesis units to be less than the weight 
between a hypothesis unit and an evidence unit. 

4,6. Simplicity. According to Principle 2(c), the degree of 
coherence of a hypothesis with what it explains and with 
its cohypotheses is inversely proportional to the number 
of cohypotheses. An example of ECtto's preference for 
simple hypotheses derives from the input: 

(EXPLAIN (Hl) El) 
(EXPLAIN (H2 H3) El) 
(CONTRADICT Hl H2) 
(DATA (El)) 

Here Hl is preferred to H2 and H3 because it accom­
plishes the explanation with no cohypotheses. The gener­
ated network is shown in Figure 6. 

Principle 2(c) is important for dealing with ad hoc 
hypotheses that are introduced only to save a hypothesis 
from refutation. Suppose that Hl is in danger of refuta­
tion because it explains negative evidence NEl, which 
contradicts evidence E 1. One might try to save Hl by 
concocting an auxiliary hypothesis, H2, which together 
with H l would explain El. Such maneuvers are common 
in science: Nineteenth-century physicists did not aban­
don Newtonian mechanics because it gave false predic­
tions concerning the motion of Uranus; instead, they 
hypothesized the existence of another planet, Neptune, 
to explain the discrepancies. Neptune, of course, was 
eventually observed, but we need to be able to discount 
auxiliary hypotheses that do not contribute to any addi­
tional explanations. Because the explanation of El by Hl 
and H2 is less simple than the explanation of NEl by Hl, 
the ad hoc maneuver does not succeed in saving Hl from 
deactivation. 

4.7. Analogy. According to Principle 3(a), analogous hy­
potheses that explain analogous evidence are coherent 
with each other. Figure 7 shows relations of analogy, 
derived from the input: 

(EXPLAIN (Hl) El) 
(EXPLAIN (H2) El) 
(EXPLAIN (H3) E3) 
(ANALOGOUS (H2 H3) (EI E3)) 
(CONTRADICT Hl H2) 
(DATA (El E3)) 
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Figure 7. Analogy. The wavy lines indicate excitatory links 
based on analogies. H2 defeats Hl because the explanation it 
gives is analogous to the explanation afforded by H3. 

The analogical links corresponding to the coherence rela­
tions required by Principle 3 are shown by wavy lines. 
Running this example leads to activation of H2 and 
deactivation of its rival, Hl. Figures 3-7 show con­
silience, simplicity, and analogy operating independently 
of each other, but in realistic examples these criteria can 
all operate simultaneously through activation adjust­
ment. Thus ECHO shows how criteria such as explanatory 
breadth, simplicity, and analogy can be integrated. My 
most recent account of inference to the best explanation 
(Thagard 1988a) included a computational model that 
integrated breadth and simplicity but left open the ques­
tion of how to tie in analogy. Principle 3 and ECHO show 
how analogy can participate with consilience and sim­
plicity in contributing toward explanatory power. 

4.8. Evidence. Principle 4 asserts that data get priority by 
virtue of their independent coherence. But it should 
nevertheless be possible for a data unit to be deactivated. 
We see this both in the everyday practice of experiment­
ers, in which it is often necessary to discard some of the 
data because they are deemed unreliable (Hedges 1987), 
and in the history of science where evidence for a dis­
carded theory sometimes falls into neglect (Laudan 1976). 
Figure 8, which derives from the following input, shows 
how this might happen. 

(EXPLAIN (Hl) El) 
(EXPLAIN (H2) E2) 
(EXPLAIN (Hl) E3) 
(EXPLAIN (Hl) E4) 
(EXPLAIN (H2) E2) 
(EXPLAIN (H2) ES) 
(EXPLAIN (H3) E3) 
(EXPLAIN (H3) ES) 
(EXPLAIN (H4) E4) 
(EXPLAIN (H4) ES) 
(CONTRADICT Hl H2) 
(CONTRADICT Hl H3) 
(CONTRADICT Hl H4) 

These inputs lead to the deactivation of E5, dragged 
down by the deactivation of the inferior hypotheses H3, 
H4, and H5. Because E5 coheres only with propositions 
that are themselves unacceptable, it becomes unaccept­
able too. Because Hl has four excitatory links, it easily 
deactivates the other three hypotheses, and their nega­
tive activation brings down the initially positive activation 
of E5 into the negative range. 

Principle 6(b) also concerns evidence, undermining 
the acceptability of hypotheses that explain only a small 
part of the relevant data. Accordingly, ECHO automati-

• 



El E2 E3 

... --­ -------- ---

E4 ES 

Figure 8. Downplaying of evidence. E5 is deactivated, even 
though it is an evidence unit, hccause it coheres only with 
inferior hypotheses. 

cally increases the value of a decay parameter in propor­
tion to the ratio of unexplained evidence to explained 
evidence (see Appendix). A hypothesis that explains only 
a fraction of the relevant evidence will thus decay toward 
the beginning activation level of O rather than become 
activated. 

4.9. Acceptability and System Coherence. If ECHO is 
taken as an algorithmic implementation of the first five 
principles of explanatory coherence, then it validates 
Principle 6, Acceptability, for ii shows that holistic judg­
ments of the acceptability of a proposition can be hased 
solely on pairwise relations of coherence. A unit achieves 
a stable activation level merely by considering the activa­
tion of units lo which ii is linked and the weights on those 
links. Asymptotic activation values greater than O signify 
acceptance of the proposition represented by the unit, 
whereas negative values signify rejection. 

ECHO also validates Principle 7, System Coherence, 
because we can borrow from connectionist models a 
measure H of the global coherence of a whole system of 
propositions at time t: 

(I) 

In this equation, wiJ is the weight from unit l to unitj, and 
a;(t) is the activation of unit i at time t. This measure or its 
inverse has been variously called the "goodness," "ener­
gy," or "harmony" of the network (Rumelhart et al. 1986, 
vol. 2, p. 13). For historical reasons, I prefer a variant of 
the last term with the alternative spelling "harmany" 
(Harman 1973). Thus ECHO stands for "Explanatory Co­
herence by Harmany Optimization." 

Equation l says that to calculate the harmany of the 
network, we consider each pair of units a; and aJ that are 
linked with weight w,. Harmany increases, for example, 
when two units with high activation have a link between 
them with high weight, or when a unit with high activa­
tion and a unit with negative activation have between 
them a link with negative weight. In ECHO the harmany of 
a system of propositions increases, other things heing 
equal, with increases in the number of data units, the 
number of links, and the number of cycles to update 
activations to bring them more in line with the weights. 

4.10. Parameters. The simulations just described depend 
on program parameters that give ECHO numerous de­
grees of freedom, some of which are epistemologically 
interesting. In the example in section 4.2 (Figure 3), the 
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relation between excitatory weights and inhibitory 
weights is crucial. If inhibition is low compared to excita­
tion, then ECHO will activate both Hl and H2, because 
the excitation that H2 gets from El will overcome the 
inhibition ii gels from Hl. Let the tolerance of the system 
be the absolute value of the ratio of excitatory weight lo 
inhibitory weight. With high tolerance, the system will 
entertain competing hypotheses. With low tolerance, 
winning hypotheses deactivate the losers. Typically, 
ECHO is run with excitatory weights set at .05 and inhibi­
tion at - . 2, so tolerance is . 25. If tolerance is high, ECHO 
can settle into a state where two contradictory hypotheses 
are both activated. ECHO performs well using a wide 
range of parameters (see the sensitivity analyses in the 
Appendix). 

Other parameters establish the relative importance of 
simplicity and analogy. If Hl explains El by itself, then 
the excitatory link between Hl and El has the default 
weight .05. But if Hl and H2 together explain El, then 
the weight of the links is set al the default value divided 
by 2, the numberofcohypotheses, leaving ii at.025. If we 
want to change the importance of simplicity as incorporat­
ed in Principle 2(c), however, then we can raise the 
number of cohypotheses to an exponent that represents 
the simplicity impact of the system. Equation 3 for doing 
this is given in the algorithm section of the Appendix. The 
greater the simplicity impact, the more weights will be 
diminished by having more cohypotheses. Similarly, the 
weights established by analogy can be affected by a factor 
representing analogy impact. If this is 1, then the links 
connecting analogous hypotheses are just as strong as 
those set up by simple explanations, and analogy can have 
a very large effect. If, on the other hand, analogy impact is 
set at 0, then analogy has no effect. 

Another important parameter of the system is decay 
rate, represented by 0 (see equation 4 in the Appendix). 
We can term this the skepticism of the system, because 
the higher it is, the more excitation from data will be 
needed to activate hypotheses. If skepticism is very high, 
then no hypotheses will be activated. Whereas tolerance 
reflects ECHO's view of contradictory hypotheses, skep­
ticism determines its treatment of all hypotheses. Princi­
ple 6(b) can be interpreted as saying that if there is much 
unexplained evidence, then ECHO' s skepticism level is 
raised. 

Finally, we can vary the priority of the data by adjust­
ing the weights to the data units from the special unit. 
Data excitation is a value from Oto l that provides these 
weights. To reflect the scientific practice of not treating 
all data equally seriously, it is also possible lo set the 
weights and initial activations for each data unit sepa­
rately. If data excitation is set low, then, contrary to 
section 4. 2, new evidence for a rejected hypothesis will 
not lead to its adoption. If data excitation is high, then, 
contrary to section 4.8, evidence that supports only a bad 
hypothesis will not be thrown out. 

With so many degrees of freedom, which are typical of 
connectionist models, one might question the value of 
simulations, as it might seem that any desired behavior 
whatsoever could be obtained. However, if a fixed set of 
default parameters applies to a large range of cases, then 
the arbitrariness is much diminished. In all the computer 
runs reported in this paper, ECHO has had excitation at 
.05, inhibition at - .2 (so tolerance is .25), data excitation 
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at .1., decay (skepticism) at .05, simplicity impact at 1, 
and analogy impact at 1. As reported in the Appendix in 
the section on sensitivity analyses, there is nothing spe­
cial about the default values of the parameters: ECHO 

works over a wide range of values. ln a full simulation of a 
scientist's cognitive processes, we could imagine better 
values being learned. Many connectionist models do not 
take weights as given, but instead adjust them as the 
result of experience. Similarly, we can imagine that part 
of a scientist's training entails learning how seriously to 
take data, analogy, simplicity, and so on. Most scientists 
get their training not merely by reading and experiment­
ing on their own but also by working closely with scien­
tists already established in their field; hence, a scientist 
can pick up the relevant values from advisors. In ECHO 

they are set by the programmer, but it should be possible 
to extend the program to allow training from examples. 

The examples described in this section are trivial and 
show merely that ECHO has some desired properties. I 
shall now show that ECHO can handle some much more 
substantial examples from the history of science and from 
recent legal deliberations. 

5. Applications of ECHO to scientific reasoning 

Theories in the philosophy of science, including com­
putational ones, should be evaluated with respect to 
important cases from the history of science. To show the 
historical application of the theory of explanatory co­
herence, I shall discuss two important cases of arguments 
concerning the best explanation: Lavoisier's argument for 
his oxygen theory against the phlogiston theory, and 
Darwin's argument for evolution by natural selection. 

ECHO has also been applied to the following: 
Contemporary debates about why the dinosaurs be­

came extinct (Thagard 1988b); 
Arguments by Wegener and his critics for and against 

continental drift (Thagard & Nowak 1988; in press); 
Psychological experiments on how beginning students 

learn physics (Ranney & Thagard 1988); and 
Copernicus's case against Ptolemaic astronomy (Nowak 

& Thagard, forthcoming). 
Additional applications are currently under develop­
ment. 

5.1. Lavoisier. In the middle of the eighteenth century, 
the dominant theory in chemistry was the phlogiston 
theory of Stahl, which provided explanations of important 
phenomena of combustion, respiration, and calcination 
(what we would now call oxidation). According to the 
phlogiston theory, combustion takes place when phlo­
giston in burning bodies is given off. In the 1770s, 
Lavoisier developed the alternative theory that combus­
tion takes place when burning bodies combine with 
oxygen from the air (for an outline of the conceptual 
development of his theory, see Thagard, in press b). 
More than ten years after he first suspected the inade­
quacy of the phlogiston theory, Lavoisier mounted a full­
blown attack on it in a paper called "Reflexions sur le 
Phlogistique" (Lavoisier 1862). 

Tables 1 and 2 present the input given to ECHO to 
represent Lavoisier's argument in his 1783 polemic 
against phlogiston. Table 1 shows the 8 propositions used 
to represent the evidence to be explained and the 12 used 
to represent the competing theories. The evidence con­
cerns different properties of combustion and calcination, 
while there are two sets of hypotheses representing the 

Table I. lnput propositions for Lavoisier (1862) example 

Evidence 
(proposition 'EI 
(proposition 'E2 
(proposition 'E3 
(proposition 'E4 

(proposition 'E5 
(proposition 'E6 
(proposition 'E7 
(proposition 'E8 

Oxygen hypotheses 

"In combustion, heat and light are given off.") 
"Inflammability is transmittable from one body to another.") 
"Combusion only occurs in the presence of pure air.") 
"Increase in weight of a burned body is exactly equal to weight of air 
absorbed.") 
"Metals undergo calcination. ") 
"In calcination, bodies increase weight.") 
"In calcination, volume of air diminishes.") 
"In reduction, effervescence appears.") 

(proposition 'OHI "Pore air contains oxygen principle.") 
(proposition 'OH2 "Pure air contains matter of fire and heat.") 
(proposition 'OH3 "In combustion, oxygen from the air combines with the burning 

body."") 
(proposition 'OH4 "Oxygen has weight.") 
(proposition 'OH5 "In calcination, metals add oxygen to become calxes. ") 
(proposition 'OH6 "In reduction, oxygen is given off.") 

Phlogiston hypotheses 
(proposition 'PHI "Combustible bodies contain phlogiston.") 
(proposition 'PH2 "Combustible bodies contain matter of heat.") 
(proposition 'PH3 "In combustion, phlogiston is given off") 
(proposition 'PH4 "Phlogiston can pass from one body to another.") 
(proposition 'PH5 "Metals contain phlogiston.") 
(proposition 'PH6 .. In calcination, phlogiston is given off") 
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Table 2. Input explanations and contradictions in 
Lavoisier (1862) example 

Oxygen explanations 
(explain '(OHl OH2 OH3) 'El) 
(explain '(OHl OH3) 'E3) 
(explain '(OHl OH3 OH4) 'E4) 
(explain '(OHl OHS) 'ES) 
(explain '(OHl OH4 OHS) 'E6) 
(explain '(OHl OHS) 'E7) 
(explain '(OHl OH6) 'E8) 

Phlogiston explanations 
(explain '(PHl PH2 PH3) 'El) 
(explain '(PHl PH3 PH4) 'E2) 
(explain '(PHS PH6) 'ES) 

Contradictions 
(contradict 'PH3 'OH3) 
(contradict 'PH6 'OHS) 

Data 
(data '(El E2 E3 E4 ES E6 E7 E8)) 

oxygen and phlogiston theories, respectively. These 
propositions do not capture Lavoisier's argument com­
pletely but do recapitulate its major points. (In a slightly 
more complicated simulation not presented here, I have 
encoded the attempt by the phlogiston theory to explain 
the increase in weight in combustion and calcination by 
the supposition that phlogiston has negative weight; La­
voisier argues that this supposition renders the phlo­
giston theory internally contradictory, because phlo­
giston theorists sometimes assumed that phlogiston has 
positive weight.) 

Table 2 shows the part of the input that sets up the 
network used to make a judgment of explanatory co­
herence. The "explain" statements are based directly on 
Lavoisier's own assertions about what is explained by the 
phlogiston theory and the oxygen theory. The "contra­
dict" statements reflect my judgment of which of the 
oxygen hypotheses conflict directly with which of the 
phlogiston hypotheses. 

These explanations and contradictions generate the 
network partially portrayed in Figure 9. Excitatory links, 
indicating that two propositions cohere, are represented 
by solid lines. Inhibitory links are represented by dotted 
lines. All the oxygen hypotheses are arranged along the 
top line and all the phlogiston hypotheses along the 
bottom, with the evidence in the middle. Omitted from 
the figure for the sake oflegibility are the excitatory links 
among the hypotheses of the two theories and the links 
between the evidence units and the special unit. In 
addition to its displayed links to evidence, OH! has 
excitatory links to OH2, OH3, OH4, OH5, and OH6. The 
link between OHi and OH3 is particularly strong, be­
cause these two hypotheses participate in three explana­
tions together. Figure 10, produced by a graphics pro­
gram that runs with ECHO, displays the links to OH3, with 
excitatory links shown by thick lines and the inhibitory 
link with PH3 shown by a thin line. The numbers on the 
lines indicate the weights of the links rounded to three 
decimal places: In accord with Principle 2(c), weights are 
different from the default weight of .05 whenever multi-

OHi OH2 

El E2 E3 

PHI PH2 
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Figure 9. Network representing Lavoisier's (1862) argument. 
El-EB are evidence units. 0Hl-OH6 are units representing 
hypotheses of the oxygen theory; PH1-PH6 represent the 
phlogiston hypotheses. Solid lines are excitatory links; dotted 
lines are inhibitory. 

pie hypotheses are used in an explanation. If the hypoth­
eses participate in only one explanation, then the weight 
between them is equal to the default excitation divided by 
the number of hypotheses; but weights are additive, so 
that the weight is increased if two hypotheses participate 
in more than one explanation. For example, the link 
between OH3 and El has the weight .017 (.0166666 
rounded), because the explanation of El by OH3 re­
quired two additional hypotheses. The weight between 
OH3 and OH! is .058 (.025 + .0166666 + .0166666), 
because the two of them alone explain E3, and together 
they explain EI and E4 along with a third hypothesis in 
each case. OHi and OH3 are thus highly coherent with 
each other by virtue of being used together in multiple 
explanations. 

The numbers beneath the names in Figure 10 indicate 
the final activation of the named units, rounded to three 
decimal places. When ECHO runs this network, starting 
with all hypotheses at activation .01, it quickly favors the 
oxygen hypotheses, giving them activations greater than 
0. In contrast, all the phlogiston hypotheses become 
deactivated. The activation history of the propositions is 
shown in Figure 11, which charts activation as a function 
of the number of cycles of updating. Figure II shows 
graphs, produced automatically during the run of the 
program, of the activations of all the units over the 107 
cycles it takes them to reach asymptote. In each graph, 
the horizontal line indicates the starting activation of 0 
and the y axis shows activation values ranging between I 
and - I. Notice that the oxygen hypotheses OHI-OH6 
rise steadily to their asymptotic activations, while PH3 
and PH6, which directly contradict oxygen hypotheses, 
sink to activation levels well below 0. The other phlo-
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settled. Thick lines indicate excitatory links; thin line indicates inhibitory link. Numbers on the lines indicate the weights on the links. 

giston hypotheses that are not directly contradicted by 
oxygen hypotheses start out with positive activation but 
are dragged down toward 0 through their links with their 
deactivated cohypotheses. Thus the phlogiston theory 
fails as a whole. 

This run of ECHO is biased towards the oxygen theory 
because it was based on an analysis of Lavoisier's argu­
ment. We would get a different network if ECHO were 
used to model critics of Lavoisier such as Kirwan 
(1789/ 1968), who defended a variant of the phlogiston 
theory. By the late 1790s, the vast majority of chemists 
and physicists, including Kirwan, had accepted La­
voisier's arguments and rejected the phlogiston theory, a 
turnaround contrary to the suggestion of Kuhn (1970) 
that scientific revolutions occur only when proponents of 
an old paradigm die off. 

Lavoisier's argument represents a relatively simple 
application of ECHO, showing two sets of hypotheses 
competing to explain the evidence. But more complex 
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explanatory relations can also be important. Sometimes a 
hypothesis that explains the evidence is itself explained 
by another hypothesis. Depending on the warrant for the 
higher-level hypothesis, this extra explanatory layer can 
increase acceptability: A hypothesis gains from being 
explained as well as by explaining the evidence. The 
Lavoisier example does not exhibit this kind of co­
herence, because neither Lavoisier nor the phlogiston 
theorists attempted to explain their hypotheses using 
higher-level hypotheses; nor does the example display 
the role that analogy can play in explanatory coherence. 

5.2. Darwin. Both these aspects - coherence based on 
being explained and on analogy - were important in 
Darwin's argument for his theory of evolution by natural 
selection (Darwin 1962). His two most important hypoth­
eses were: 

DH2 - Organic beings undergo natural selection. 
D H3 - Species of organic beings have evolved. 
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These hypotheses together enabled him to explain a host 
of facts, from the geographical distribution of similar 
species to the existence of vestigial organs. Darwin's 
argument was explicitly comparative: There are numer~ 
ous places in the Origin where he points to phenomena 
that his theory explains but that are inexplicable on the 
generally accepted rival hypothesis that species were 
separately created by God. 

Darwin's two main hypotheses were not simply co~ 
hypotheses, however, for he also used DH2 to explain 
DH3! That is, natural selection explains why species 
evolve: If populations of animals vary, and natural selec~ 
lion picks out those with features well adapted to particu­
lar environments, then new species will arise. Moreover, 
he offers a Malthusian explanation for why natural selec~ 
tion occurs as the result of the geometrical rate ofpopula~ 
tion growth contrasted with the arithmetical rate of in~ 
crease in land and food. Thus Malthusian principles 
explain why natural selection takes place, which explains 
why evolution occurs, and natural selection and evolution 

together explain a host of facts better than the competing 
creation hypothesis does. 

The full picture is even more complicated than this, for 
Darwin frequently cites the analogy between artificial 
and natural selection as evidence for his theory. He 
contends that just as farmers are able to develop new 
breeds of domesticated animals, so natural selection has 
produced new species. He uses this analogy not simply to 
defend natural selection, but also to help in the explana­
tions of the evidence: Particular explanations using natu~ 
ral selection incorporate the analogy with artificial selec~ 
lion. Finally, to complete the picture of explanatory 
coherence that the Darwin example offers, we must 
consider the alternative theological explanations that 
were accepted by even the best scientists before Darwin 
proposed his theory. 

Analysis of On the origin of species suggests the 15 
evidence statements shown in Table 3. Statements El­
E4 occur in Darwin's discussion of objections to his 
theory; the others are from the later chapters where he 
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Table 3. Explanations and contradictions for Darwin (1962) example 

Darwin's evidence 
(proposition ·El 
(proposition 'E2 
(proposition 'E3 
(proposition 'E4 
(proposition 'E5 
(proposition 'E6 
(proposition 'E7 
(proposition 'ES 
(proposition 'E9 
(proposition 'ElO 
(proposition 'Ell 
(proposition 'El2 
(proposition 'El3 
(proposition 'El4 
(proposition 'El5 

''The fossil record contains few transitional forms.") 
"Animals have complex organs.") 
"Animals have instincts.") 
"Species when crossed become sterile.") 
.. Species become extinct.") 
.. Once extinct, species do not reappear.") 
"Forms of life change a1most simultaneously around the world.") 
"Extinct species are similar to each other and to living forms.") 
"Barriers separate similar species.") 
"Related species are concentrated in the same areas.") 
"Oceanic islands have few inhabitants, often of peculiar species.") 
"Species show systematic affinities.") 
"Different species share similar morphology.") 
"The embryos of different species are similar.") 
"Animals have rudimentary and atrophied organs.") 

Darwin's main hypotheses 
(proposition 'DHl "Organic beings are in a struggle for existence.") 
(proposition 'DH2 "'Organic beings undergo natural selection.") 
(proposition 'DH3 "Species of organic beings have evolved.") 

Darwin's auxiliary hypotheses 
(Proposition 'DH4 "The geological record is very imperfect.") 
(proposition 'DH5 "There are transitional forms of complex organs.") 
(proposition 'DH6 "Mental qualities vary and are inherited.'') 

Dan.vin' s facts 
(proposition 'DFl '"Domestic animals undergo variation.") 
(proposition 'DF2 "Breeders select desired features of animals.") 
(proposition 'DF3 "Domestic varieties are developed.") 
(proposition 'DF4 "Organic beings in nature undergo variation.") 
(proposition 'D F5 "Organic heings increase in population at a high rate.") 
(proposition 'DF6 "The sustenance available to organic beings does not increase at a 

high rate.") 
(proposition 'DF7 "Embryos of different domestic varieties are similar.") 

Creationist hypothesis 
(proposition 'CHI "Species were separately created by God.") 

argues positively for his theory. Table 3 also shows Dar­
win's main hypotheses. DH2and DH3are the core of the 
theory of evolution by natural selection, providing expla­
nations of its main evidence, E5-El5. DH4-DH6 are 
auxiliary hypotheses that Darwin uses in resisting objec­
tions based on El -E3. He considers the objection con­
cerning the absence of transitional forms to be particu­
larly serious, but explains it away by saying that the 
geological record is so imperfect that we should not 
expect to find fossil evidence of the many intermediate 
species his theory requires. Darwin's explanations also 
use a variety of facts he defends with empirical arguments 
that would complicate the current picture too much to 
present here. Hence, I will treat them (DF1-DF7) sim­
ply as pieces of evidence that do not need explanatory 
support. The creationist opposition frequently men­
tioned by Darwin is represented by the single hypothesis 
that species were separately created by God. 

Table 4 shows the explanation and contradiction state­
ments that ECHO uses to set up its network, which is 
partially displayed in Figure 12. Notice the hierarchy of 
explanations, with the high rate of population increase 
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explaining the struggle for existence, which explains 
natural selection, which explains evolution. Natural se­
lection and evolution together explain many pieces of 
evidence. The final component of Darwin's argument is 
the analogy between natural and artificial selection. The 
wavy lines represent excitatory links based on analogy. 
Just as breeders' actions explain the development of 
domestic varieties, so natural selection explains the evo­
lution of species. At another level, Darwin sees an em­
bryological analogy. The embryos of different domestic 
varieties are quite similar to each other, which is ex­
plained by the fact that breeders do not select for proper­
ties of embryos. Similarly, nature does not select for most 
properties of embryos, which explains the many sim­
ilarities between embryos of different species. 

Darwin's discussion of objections suggests that he 
thought creationism could naturally explain the absence 
of transitional forms and the existence of complex organs 
and instincts. Darwin's argument was challenged in many 
ways, but based on his own view of the relevant explana­
tory relations, at least, the theory of evolution by natural 
selection is far more coherent than the creation hypoth-



Table 4. Explanations and contradictions for Danvin 
example 

Darwin's explanations 
(a) of natural selection and evolution 
(explain '(DFS DF6) 'DH!) 
(explain '(DH! DF4) 'DH2) 
(explain '(DH2) 'DH3) 

(b) of potential counterevidence 
(explain '(DH2 DH3 DH4) 'El) 
(explain '(DH2 DH3 DHS) 'E2) 
(explain '(DH2 DH3 DH6) 'E3) 

(c) of diverse evidence 
(explain '(DH2) 'ES) 
(explain '(DH2 DH3) 'E6) 
(explain '(DH2 DH3) 'E7) 
(explain '(DH2 DH3) 'ES) 
(explain '(DH2 DH3) 'E9) 
(explain '(DH2 DH3) 'EIO) 
(explain '(DH2 DH3) 'El2) 
(explain '(DH2 DH3) 'El3) 
(explain '(DH2 DH3) 'El4) 
(explain '(DH2 DH3) 'EIS) 

Darwin's analogies 
(explain '(DF2) 'DF3) 
(explain '(DF2) 'DF7) 
(analogous '(DF2 DH2) '(DF3 DH3)) 
(analogous '(DF2 DH2) '(DF7 El4)) 

Creationist explanations 
(explain '(CHI) 'El) 
(explain '(CHI) 'E2) 
(explain '(CH I) 'E3) 
(explain '(CHI) 'E4) 

Contradiction 
(contradict 'CHI 'DH3) 

Data 
(data '(El E2 E3 E4 ES E6 E7 ES E9 EIO Ell El2 El3 

El4 EIS)) 
(data '(DFI DF2 DF3 DF4 DFS DF6 DF7)) 

esis. Creationists, of course, would marshal different 
arguments. 

For clarity, Figure 12 omits the links from DH2 to all 
the evidence propositions besides E5, and the links from 
DH2and DH3to DH4, DH5, andDH6. Figure13shows 
the actual connectivity of DH3. Running ECHO to adjust 
the network to maximize hannany produces the expected 
result: Darwin's hypotheses are all activated, whereas the 
creation hypothesis is deactivated. In particular, the 
hypothesis D H3 - that species evolved - reaches an 
asymptote at .921, while the creation hypothesis, CHI, 
declines to -.491. DH3 accrues activation in three ways. 
It gains activation from above, from being explained by 
natural selection, which is derived from the struggle for 
existence, and from below, by virtue of the many pieces of 
evidence it helps to explain. In addition, it receives 
activation by virtue of the sideways, analogy-based links 
with explanations using artificial selection. Figure 14 
graphs the activation histories of most of the units over 
the 70 cycles it takes them to settle. Note that the 
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creationist hypothesis, CHI, initially gets activation by 
virtue of what it explains, but is driven down by the rise of 
DH3, which contradicts it. 

The Lavoisier and Darwin examples show that ECHO 

can handle very complex examples of actual scientific 
reasoning. One might object that in basing ECHO analyses 
on written texts, I have been modeling the rhetoric of the 
scientists, not their cognitive processes. Presumably, 
however, there is some correlation between what we 
write and what we think. ECHO could be equally well 
applied to explanatory relations that were asserted in the 
heat of verbal debate among scientists. Ranney and 
Thagard (1988) describe ECHo's simulation of naive sub­
jects learning physics, where the inputs to ECHO were 
based on verbal protocols. 

6. Applications of ECHO to legal reasoning 

Explanatory coherence is also important for some kinds of 
legal reasoning. Most discussions of legal reasoning con­
cern either deductive inference, in which legal princi­
ples, rules, or statutes are applied to particular cases, or 
analogical inference, in which past cases are used as 
precedents to suggest a decision in a current case (Carter 
1984; Gardner 1987; Golding 1984). Recently, however, 
some attention has been paid to the role of explanatory 
inferences in legal reasoning (Hanen 1987; Pennington & 
Hastie 1986; 1987). These researchers are concerned 
primarily with inferences made by juries about factual, 
rather than legal, questions. In murder trials, for exam­
ple, juries can be called upon to infer what happened, 
choosing between contradictory accounts provided by 
the prosecution and the defense. To get a conviction on a 
first-degree murder charge, the prosecution must show 
(I) that the accused killed the victim and (2) that the 
accused did so with a previously formed purpose in mind. 
The first proposition must account for much of the evi­
dence; the second provides one possible explanation of 
the first. The defense may try to defend alternative 
hypotheses, such as that someone else killed the victim or 
that the accused acted in self-defense and therefore is 
innocent, or that the accused acted in the heat of the 
moment and is therefore guilty only of manslaughter. The 
defense need not provide an alternative explanation of 
the killing, but may undermine the explanatory co­
herence of the prosecution's account by providing alter­
native interpretations of key testimony. For example, in 
the Peyer murder trial discussed below, the defense tried 
to discredit two important witnesses for the prosecution 
who had come forward just before the trial (a year after 
the killing) by saying that they were merely seeking 
publicity and had not seen what they claimed. 

In terms of my theory of explanatory coherence and 
ECHO, we can think of the prosecution and defense as 
advocating incompatible ways of explaining the evidence. 
But, as in scientific reasoning, explanatory inference in 
the legal domain is not simply a matter of counting which 
of two hypotheses explains the most pieces of evidence. 
More complicated organizations of hypotheses and evi­
dence will often arise. The hypothesis that the accused 
intended to kill the victim will be more plausible if we can 
explain why the accused had it in for the victim, say, 
because of a previous altercation. Analogy can also play a 
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Figure 12. Network representing Darwin's (1962) argument. El-El5 are evidence units. DH2 represents natural selection, and 
DH3 represents evolution of species. These defeat CHI, which represents the hypothesis that species were independently created. 
Solid lines are excitatory links; dotted line is inhibitory. 

role: Pennington and Hastie (1986, p. 254) report that 
jurors sometimes evaluate the plausibility of explanations 
by considering how they would act in analogous situa­
tions. For example, a juror might reason, "If the victim 
had done to me what he did to the accused, then I would 
be angry and would want to get back at him, so maybe the 
accused did intend to kill the victim." Explanatory in­
ferences can also be relevant to evaluating the testimony 
of a witness. If a witness who was a good friend of the 
accused says they were together at the time of the 
murder, the jury has to decide whether the best explana­
tion of the witness's utterance is that (a) the witness really 
believe it or (b) the witness was lying to protect the 
accused. 

The plausibility of a theory of explanatory coherence 
for legal reasoning depends on its application to real 
cases. ECHO has been used to model reasoning in two 
recent murder trials: the "preppy" murder trial in which 
Robert Chambers was accused of murdering Jennifer 
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Levin in New York City and the San Diego trial in which 
Craig Peyer was accused of murdering Cara Knott. In 
both cases, there were no witnesses to the killing, so the 
juries had to infer on the basis of circumstantial evidence 
what actually happened. 

6.1. Chambers. On August 26, 1986, Robert Chambers, 
by his own admission, killed Jennifer Levin in Central 
Park after the two had left a bar together. He maintained, 
however, that the killing was accidental, occurring when 
he struck her by reflex when she hurt him during rough 
sex. The prosecution maintained, in contrast, that he had 
killed her intentionally during a violent struggle. The trial 
took place in the first three months of 1988 and was 
extensively reported in the press. The following ECHO 

analysis is based on daily reports in the New York Times 
that described the major testimony and arguments. This 
information is, of course, not nearly as complete as that 
presented in the courtroom itself, but it suffices for 
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displaying the structure of a very complex explanatory 
inference (see also Taubman 1988). 

The input to ECHO is shown in Tables 5 and 6. Gl-G7 
are hypotheses used by the prosecution to argue for 
Chambers's guilt, whereas I 1-18 present a very different 
explanatory account that supports his innocence. Figure 
15 shows part of the network produced by this input, with 
excitatory links shown by solid lines and inhibitory ones 
shown by dotted lines (NE4 and NE9 are omitted to 
relieve crowding). The evidence propositions E0-El6 
are indicated by number alone. Notice the layers of 
explanations: 13 explains 14, which explains 11, which 
explains E4. The prosecution's case does a better job of 
explaining the physical evidence using hypotheses con­
cerning a struggle and a strangling. I have included two 
units, G6 and G7, to represent the question of Cham­
bers's intent, which is crucial for deciding whether he is 
guilty of second-degree murder (he intended to kill her) 

or manslaughter (he intended merely to hurt her). 
Running the network produces a clear win for Gl, the 

main hypothesis implying Chambers's guilt. Figure 16 
shows the links to G 1 and the asymptotic activation of the 
units linked to it. Figure 17 displays the activation histo­
ries of all the units over 80 cycles. In the actual trial, the 
jury never got a chance to finish deciding the second­
degree murder charge because a manslaughter plea­
bargain was arranged during their deliberations. One 
important aspect that is not directly displayed in this 
simulation is the notion of determining guilt "beyond a 
reasonable doubt." Perhaps hypotheses concerning inno­
cence should receive special activation so that hypotheses 
concerning guilt have to be very well supported to over­
come them. Alternatively, we could require a high toler­
ance level so that guilt hypotheses would only be able to 
deactivate innocence hypotheses that were markedly 
inferior. 
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6.2. Peyer. Let us now consider another recent trial, 
where the evidence was less conclusive. Cara Knott was 
killed on December 27, 1986, and Craig Peyer, a veteran 
California Highway Patrolman, was accused. Twenty-two 
women, young and attractive like the victim, testified 
that they had been pulled over by Peyer for extended 
personal conversations near the stretch of road where 
Knott's body was found. The trial in San Diego ended 
February 27, 1988, and ECHO analysis is based on very 
extensive coverage (two full pages) that appeared the next 
day in the San Diego Union and the San Diego Tribune. 

Tables 7 and 8 show the inputs to ECHO representing 
the evidence, hypotheses, and explanatory and contra­
dictory statements in the Peyer trial. As in the Chambers 
representation, the G propositions are hypotheses con­
cerning Peyer's guilt, whereas the I propositions concern 
his innocence. The prosecution can be understood as 
arguing that the hypothesis that Peyer killed Knott is the 
best explanation of the evidence, whereas the defense 
contends that the evidence does not support that claim 
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beyond a reasonable doubt. Figure 18 shows the network 
ECHO sets up using the input given to it. Figure 19 shows 
the connectivity of the unit Cl along with the asymptotic 
activation of units linked to it, and Figure 20 graphs the 
activation histories of most of the units, omitting El and 
E2 for lack of space. 

Peyer's trial ended in a hung jury, with seven jurors 
arguing for conviction on the second-degree murder 
charge and five arguing against it; the case is being 
retried. Figure 20 shows that ECHO finds more explanato­
ry coherence in the guilt hypotheses than in the inno­
cence hypotheses, although the activation of some of the I 
units shows that, in part, the defense had a more convinc­
ing case. Why, then, were some jucors re!uctant to 
convict? It could, in part, be the question of establishing 
guilt beyond a reasonable doubt. The sensitivity analyses 
reported in the Appendix (see Table 11) show that ECHO 

rejects the hypothesis of Peyer's innocence much less 
strongly than it rejects the hypothesis of Chambers's 
innocence. With greater tolerance accruing from some-



Table 5. Input propositions for Chambers case 

"L died.") 
"L had wounds on her neck.") 
"L said she liked sex with C. ") 
"L's blouse was around her neck.") 
"L's panties were not found near her.") 
"L's panties were found near her.") 
"The police were careless about evidence.") 
"C lied to L's friend about not having seen L. ") 

Thagard: Explanatory coherence 

Evidence 
(proposition 'EO 
(proposition 'El 
(proposition "E2 
(proposition 'E3 
(proposition 'E4 
(proposition 'NE4 
(proposition 'E5 
(proposition 'E6 
(proposition 'E7 
(proposition 'E8 
(proposition 'E9 
(proposition 'NE9 
(proposition 'EIO 
(proposition 'Ell 
(proposition 'El2 
(proposition 'El3 
(proposition 'El4 
(proposition 'El5 
(proposition 'El6 

"C had scratches on his face and cuts on his hands.") 
"C had a broken hand.°') 
"The skin on C's hand was not broken.") 
"The skin on C's hand was broken.") 
"L's left eye was swollen .ind her mouth was cut.") 
"L's face was dirty.") 
"L had pinpo.int hemorrhages in eye tissue.") 
"L's neck had severe hemorrhages.") 
"Bloodstains of C's type were found on L's jacket.") 
"C's fingers were bitten.") 
"C's video said he had hit her once.") 

Hypotheses that Chambers is guilty 
(proposition 'GI "C strangled L. ") 
(proposition 'G2 "C and L struggled.") 
(proposition 'G3 "C lied about what happened.") 
(proposition 'G4 "L's neck was held for at least 20 seconds.") 
(proposition 'G5 "C broke his hand punching L. ") 
(proposition 'G6 "C intended to kill L. ") 
(proposition 'G7 "C intended to hurt L but not kill her.") 

Hypotheses that Chambers is innocent 
(proposition 'II "C killed L with a single blow.") 
(proposition ·12 "The marks on L's neck were a scrape from C's watchband.") 
(proposition '13 "L was having sadistic sex with C. ") 
(proposition '14 "L squeezed C's testicles.") 
(proposition '15 "The police moved L's panties.") 
(proposition '16 "C broke his hand falling on a rock.") 
(proposition '17 "C threw Lover his shoulder.") 
(proposition '18 "C's blow triggered carotid sinus reflex.") 

Note: Lis Jennifer Levin; C is Robert Chambers. 
Source: Data gathered from daily reports in the New York Times over a three-month period in 
1988; see also Taubman (1988). 

what higher excitation or lower inhibition, the unit repre­
senting Peyer's innocence is not deactivated. 

It is also possible that matters extraneous to explanato­
ry coherence were playing the key role in convincing 
some of the jurors against conviction. One juror was 
quoted as saying that a California Highway Patrolman 
with 13 years of service could never have committed a 
murder. This line of reasoning is represented partially by 
18, which in the above simulation is swamped by Cl, but 
a juror could give El7 (Peyer's spotless record) such a 
high priority that 18 could defeat Cl. The simulation here 
is not claimed to handle all the factors that doubtless go 
into real jurors' decisions: "I could tell he was lying 
because he had shifty eyes," ''The defense lawyer was 
such a nice man," "Ifhe wasn't guilty of this, he was guilty 
of something else just as bad," and so on. But ECHO 
successfully handles a large part of the evidence and 
hypotheses in these two complex cases oflegal reasoning. 

7. Limitations of ECHO 

It is important to appreciate what ECHO cannot do as well 
as what it can. The major current limitation on ECHO is 
that the input propositions, explanation statements, and 
contradiction statements are constructed by the program­
mer. How arbitrary are these encodings? Several differ­
ent people have successfully done ECHO analyses, on 
more than a dozen disparate cases. In all four of the 
examples presented in this paper, virtually no adjustment 
of input was required to produce the described runs. We 
have not yet done the experiment of having several 
people analyze the same case and assessing the intercoder 
reliability, however. We can nevertheless maintain that 
the representations are not arbitrary thought experi­
ments, because they are derived from scientific texts, 
newspaper reports of trials, and subject protocols. 

ECHo's scope is not universal: Not every case of reason-
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Data 

Table 6. Explanations and contradictions 
in Chambers example 

(data '(EO El E2 E3 E4 E5 E6 E7 ES E9 EIO Ell El2 El3 
El4 EIS El6)) 

Contradictions 
(contradict 'GI 'II) 
(contradict 'G4 'II) 
(contradict 'G5 '16) 
(contradict 'GI '12) 
(contradict 'G2 '13) 
(contradict 'G6 'G7) 
(contradict 'E4 'NE4) 
(contradict 'E9 'NE9) 

Explanations supporting Chambers's innocence 
(explain '(II 18) 'EO) 
(explain '(12) 'EI) 
(eXPlain '(13) '14) 
(explain '(14) 'II) 
(explain '(13 15) 'E4) 
(explain '(16) 'ES) 
(explain '(16) 'NE9) 
(explain '(17) 'El2) 
(explain '(13) 'EIS) 
(explain '(II) 'EJ6) 

Explanations supporting Chambers's guilt 
(explain '(G2) 'GI) 
(explain '(G2) 'E3) 
(explain '(G2) 'E4) 
(explain '(G2) 'E7) 
(explain '(G2) 'El2) 
(eXPlain '(GI) 'G4) 
(explain '(GI) 'EO) 
(explain '(GI) 'El) 
(explain '(G2) 'E 10) 
(explain '(G2) 'E II) 
(explain '(G4) 'EJ3) 
(explain '(G2) 'El4) 
(explain '(G2) 'EIS) 
(explain '(G5) 'ES) 
(explain '(G5) 'E9) 
(explain '(G3) 'EJ6) 
(explain '(G3) 'E6) 
(explain '(G6) 'GI) 
(explain '(G7) 'GI) 
(explain '(G2) 'G7) 

ing can be analyzed for ECHO's application. In doing our 
analyses, we try to restrict the EXPLAIN statements to 
cases where there is a causal relation. A research assistant 
attempted to use ECHO to analyze arguments in this 
journal for and against parapsychology (Rao & Palmer 
1987; Alcock 1987), but concluded that ECHO was not 
appropriate. This debate largely concerns the reliability 
of parapsychological experiments, and ECHO is not a data 
analyzer. ECHO would be appropriate for this case only if 
there were a general parapsychological theory whose 
explanatory coherence could be evaluated. The general 
conclusion of Rao and Palmer is that parapsychological 
experiments are not explainable with current science, but 
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that conclusion is not in itself an explanation of the 
experiments. 

From a logical point of view, the analysis of explanatory 
relations is easily trivialized. The explanations of El and 
E2 by hypotheses Hl and H2 together can be collapsed 
logically by conjoining El and E2 into E3, and JU and H2 
into H3, so that we are left with only the boring explana­
tion ofE3 by H3. Fortunately, in real disputes in law and 
the history of science, such trivializations do not occur. 
We can easily get the appropriate level of detail by 
attending to the claims that scientists and lawyers make 
about the explanatory power of their theories. Lavoisier 
and the phlogiston theorists operated at roughly the same 
level of detail. In analyzing texts to assess explanatory 
coherence, I recommend the following maxim: 
Detail Maxim. 

ln analyzing the propositions and explanatory relations rele­
vant to evaluating competing theories, go into as much detail as 
is needed to distinguish the explanatory claims of the theories 
from each other, and be careful to analyze all theories at the 
same level of detail. 

Following this maxim removes much of the apparent 
arbitrariness inherent in trying to adjudicate among 
theories. 

Ideally, we would want to automate the production of 
the input to ECHO. This could be done either in a natural 
language system capable of detecting explanatory argu­
ments (cf Cohen, R. 1983) or, more easily, in an inte­
grated system of scientific reasoning that formed explana­
tory hypotheses which could then be passed to ECHO for 
evaluation. PI (which is short for "processes of induction" 
and is pronounced "pie") is a crude version of such a 
system (Thagard 1988a). In PI, it is possible to represent 
hypotheses like those in the scientific examples discussed 
above using rules. One of Lavoisier's principles might be 
translated into the rule: 

If xis combustible and x oombines with oxygen, then x bums. 

Like other rule-based systems, PI can use such rules to 
make inferences. Given a set of such rules, Pl can he set 
the task of explaining other rules representing the evi­
dence. While PI runs, it is possible to keep track of which 
rules were used in explaining which pieces of evidence. 
Thus explanation from this computational point of view is 
a process of derivation that can be inspected to determine 
what was actually used in deriving what. Tracing back to 
which hypotheses were used in deriving which evidence 
could generate the EXPLAIN formulas that are input for 
ECHO. Because PI does not have the rules of inference 
that permit logicians to concoct nonexplanatory deduc­
tions - for example, to infer (A or B) from A - we can 
identify what hypotheses played a role in explaining what 
pieces of evidence. Putting together all the rules to make 
up Lavoisier's theory and furnish explanations is a daunt­
ing task, because his writings and my summary for ECHO 

omit much background knowledge that would have to be 
dredged up and included if the derivations were to look 
complete. But artificial intelligence models of problem 
solving and learning such as PI provide at least a glimpse 
of how explanations can be noticed. Falkenhainer and 
Rajamoney (1988) describe a system that combines hy­
pothesis formation by analogy with hypothesis evaluation 
by experimental design. So eventually it should be possi-
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Figure 15. Network representing the Chambers trial. 1-16 are evidence units. Gl-G7 represent hypotheses concerning 
Chambers's guilt; Il-18 represent his innocence. Solid lines arc excitatory links; dotted lines are inhibitory. 

hie to integrate ECHO with a system that generates expla­
nations and provides its input automatically. 

ECHO is a very natural way of implementing the pro­
posed theory of explanatory coherence, but one might 
argue for the construction of a nonconnectionist co­
herence model. Perhaps it could be based on simple rules 
such as the folluwing: 

(1) If a proposition is a piece of evidence, then accept 
it. 

(2) If a proposition contradicts an accepted proposi­
tion, then reject it. 

(3) Of two contradictory hypotheses, accept the one 
that coheres (by virtue of explanatory and analogical 
relations) with more accepted propositions and has fewer 
cohypotheses. 

(4) If a proposition does not contradict any other prop­
ositions, accept it if it coheres with more accepted propo­
sitions than rejected ones. 

Analysis suggests that an implementation of such rules 
could be a fair approximation to ECHO for many cases, but 
would lack several advantages that derive from ECHo' s 
connectionist algorithms. First, rules such as (1) and (2) 
are much too categorical. ECHO is capable of rejecting a 
piece of evidence if it coheres only with a very inferior 
theory (section 4.8), just as scientists sometimes throw 
out data. Similarly, a hypothesis should not be rejected 

just because it makes a false prediction, because addi­
tional assumptions may enable it to explain the evidence 
and explain away the negative result. Second, the rule­
based implementation would be very sensitive to the 
order of application of rules, requiring that the four rules 
stated above be applied in approximately the order given. 
Moreover, if a hypothesis is contradicted by two other 
propositions, it will be important to evaluate the other 
propositions first so that together they can count against 
the given hypothesis, otherwise it might be accepted and 
then knock them out one at a time. ECHo's parallelism 
enables it to evaluate all propositions simultaneously, so 
these undesirable order effects do not arise. Third, rules 
(3) and (4) above should not operate in isolation from one 
another: In our simulation of Wegener's argument for 
continental drift (Thagard & Nowak 1988), units repre­
senting the views that Wegener rejects become deacti­
vated because of a combination of being contradicted and 
being coherent with rejected propositions. Fourth, the 
rule-based system's use of the binary categories of accep­
tance and rejection will prevent it from having the sen­
sitivity of ECHO in indicating degrees of acceptance and 
rejection by degrees of activation. Fifth, the rule-based 
system does not come with a metric for system coherence 
(section 4. 9). Thus, although ECHO is not the only possi­
ble means for computing coherence, its connectionist 
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Figure 16. Connectivity of the unit Gl, representing the claim that Chambers strangled Levin. The numbers under the units arc 
their activation values after the unit has settled. Thick lines indicate excitatory links; thin lines indicate inhibitory links. Numbers on 
the lines indicate the weights on the links. 

algorithms give it many natural advantages over alter­
native approaches. 

Finally, as an implementation of a theory of explanato­
ry coherence, ECHO is only as good as the principles in 
that theory. The seven principles of explanatory co­
herence seem now to be complete enough to characterize 
a wide range of cases of hypothesis evaluation, but they 
are themselves hypotheses and therefore subject to 
revision. 

8. Implications for artificial intelligence 

The theory of explanatory coherence and its implementa­
tion in ECHO have implications for research in the areas of 
artificial intelligence, cognitive psychology, and philoso­
phy. Like the evaluation of scientific theories, the evalua­
tion of philosophical and computational theories is a 
comparative matter. While discussing the computational, 
psychological, and philosophical significance of the ap-
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proach proposed here, I shall compare it with similar 
research in these fields. 

8.1. Connectlonism. Very recently, other researchers 
have also suggested connectionist models for the evalua­
tion of explanatory hypotheses. Peng and Reggia (in 
press) describe a connectionist model for diagnostic prob­
lem solving. Theoretically, it differs from my proposal 
most in that it does not use constraints involving sim­
plicity (in the sense indicated by Principle 2[c]), analogy, 
and the desirability of a hypothesis being explained as 
well as explaining. Their implementation differs from 
ECHO most strikingly in that it does not use inhibitory 
links between units representing incompatible hypoth­
eses, hut instead has nodes competing for activation from 
the output ofa source node. Goel et al. (1988) propose an 
architecture that chooses the best explanation by consid­
ering explanatory coverage of data, number of hypoth­
eses, and prior plausibility of hypotheses. ECHO uses the 
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Figure 17. Activation history of the Chambers network. Each graph shows the activation of a unit over 59 cycles of updating, on a 
scale of -1 to 1, with the horizontal line indicating the initial activation of 0. 

first two of these criteria, but not the third, because in the 
domains to which it has been applied, plausibility appears 
to be determined by explanatory coherence alone. 

Parallel constraint satisfaction models somewhat sim­
ilar to ECHO have been proposed for other phenomena: 
analogical mapping (Holyoak & Thagard, in press), analog 
retrieval (Thagard et al. 1989), discourse processing 
(Kintsch 1988), and word pronunciation retrieval (Leh­
nert 1987). (See also surveys by Feldman & Ballard 1982 
and Rumelhart et al. 1986.) These systems differ Ii-om 
Boltzmann machines and back-propagation networks 
(Rumelhart et al. 1986) in that they do not adjust weights 
while the network is running, only activations. 

ECtto's connectionist character may prompt immediate 
boos or cheers from different partisan quarters. Cur­
rently, debate rages in cognitive science concerning com­
peting methodologies. We can distinguish at least the 
following approaches to understanding the nature of 
mind and intelligence: 

(1) Straight neuroscience, studying neurons or sec­
tions of the brain 

(2) Computational models of actual neurons in the 
brain 

(3) Connectionist models using distributed represen­
tations, so that a concept or hypothesis is a pattern of 
activation over multiple units 

(4) Connectionist models using localist representa­
tions, in which a single unit represents a concept or 
proposition 

(5) Traditional artificial intelligence models using data 
structures such as frames and production rules 

(6) Psychological experiments 
(7) Mathematical analysis 
(8) Theoretical speculation 

ECHO falls into (4), but I reject as methodological imperi­
alism the opinion that other approaches are not worth 
pursuing as well. In the current neonatal state of cog­
nitive science, restrictions on ways to study the mind are 
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Table 7. Input propositions for the Peyer example 

Evidence 
(proposition 'El 
(proposition 'E2 

"Knott's body and car were found on a frontage road near 1-15.") 
"22 young women reported being talked to at length by Peyer after being stopped near where Knott' s 

body was found.") 
{proposition 'E3 
{proposition 'E4 
(proposition 'E5 
(proposition 'E6 
(proposition 'E7 
{proposition 'EB 
(proposition 'E9 
(proposition 'ElO 
{proposition 'Ell 
(proposition 'El2 
(proposition 'El3 
{proposition 'El4 
(proposition 'El5 
(proposition 'El6 
{proposition 'El7 

"Calderwood said that he saw a patrol car pull over a Volkswagon like Knott's near 1-1.5. ") 
"Calderwood came forward only at the trial.") 
"Calderwood changed his story several times.") 
"6 fibers found on Knott's body matched Peyer's uniform.") 
"Ogilvie said Peyer qllizzed her about the case and acted strangely.") 
"Dotson said Olgivie is a liar.") 
"Anderson and Schwartz saw scratches on Peyer' s face the night of the killing.") 
"Martin said she saw Peyer pull Knott's Volkswagon over.") 
"Martin came forward only just before the trial.") 
"Anderson says she saw Peyer wipe off his nightstick in his trunk.") 
"Anderson did not say anything abmtt the nightstick when she was first interrogated.") 
"Bloodstains found on Knott's clothes matched Peyer's blood.") 
"12,800 other San Diegans had blood matching that on Knott's clothes.") 
"A shabby hitchhiker was lunging at cars near the 1-15 entrance.") 
"Peyer had a spotless record with the California Highway Patrol.") 

Hypotheses that Peyer is guilty 
(proposition 'Gl "Peyer killed Knott.") 
(proposition 'G2 "Knott scratched Peyer's face.") 
(proposition 'G3 "Fibers from Peycr's uniform were transferred to Knott.") 
(proposition 'G4 "Peyer pulled Knott over.") 
(proposition 'G5 "Calderwood was reluctant to come forward because he wanted to protect his family from publicity.") 
(proposition 'G6 "Peyer like to pull over young women.") 
(proposition 'G7 "'Peyer had a bloody nightstick.") 
(proposition 'GB "Anderson was havillg personal problems when first interrogated.") 

Hypotheses that Peyer is innocent 
(proposition '11 "Someone other than Peyer killed Knott.") 
(proposition '12 "Calderwood made his story up.") 
(proposition '13 "The 6 fibers floated around in the police evidence room.") 
(proposition '14 "Ogilvie lied.") 
{proposition '14A "Ogilvie is a liar.") 
(proposition '15 "Peyer' scratches came from a fence.") 
(proposition '16 "Martin lied.") 
{proposition '17 "Anderson was mistaken about the nightstick.") 
(proposition '18 "Peyer is a good man.") 

Source: Analysis based on coverage by the San Diego Union and San Diego Tribune on February 28, 1988. 

clearly premature. By pursuing all eight strategies, we 
can hope to learn more about how to investigate the 
nature of mind. As suggested by my juxtaposition of PI 
and ECHO in section 7, I see no great incompatibility 
between connectionist systems and traditional symbolic 
AI. Much is to be gained from developing hybrid systems 
that exploit the strengths of both research programs 
(Hendler 1987; Lehnert 1987). 

Despite ECHo's parallelism, and use of a vague neural 
metaphor of connections, I have not listed neural plau­
sibility as one of its advantages, because current knowl­
edge does not allow any sensible mapping from nodes of 
ECHO representing propositions to anything in the brain. 
For the same reason, I have not used the term "neural 
net." Parallelism has its advantages independent of the 
brain analogy (Thagard 1986). 

8.2. Probabilistic networks. The account of explanatory 
coherence I have given bears some similarity to Pearl's 
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(1986; 1987) work on belief networks. Pearl also repre­
sents propositions as nodes linked by inferential depen­
dencies and uses a parallel algorithm to update numerical 
values assigned to the nodes. The major difference be­
tween ECHO and Pearl's networks, however, is that he 
construes numerical values as the probabilities of the 
propositions, and weights between nodes as conditional 
probabilities. Thus, in contrast lo links established by 
coherence relations, Pearl's links are asymmetric, be­
cause in general the probability of P given Q is not equal 
to the probability of Q given P. 

Although Pearl's probabilistic approach appears prom­
ising for domains such as medical diagnosis where we can 
empirically obtain frequencies of cooccurrence of dis­
eases and symptoms and thus generate reasonable condi­
tional probabilities, it does not seem applicable to the 
cases of explanatory coherence I have been considering. 
What, for example, is the conditional probability of 
burned objects gaining in weight given the hypothesis 



Table 8. Explanations and contradictions 
in the Peyer example 

The case for Peyer's guilt 
(explain '(GI) 'G2) 
(explain '(GI) 'G3) 
(explain '(GI) 'G7) 
(explain '(GI) 'El) 
(explain '(G6) 'E2) 
(explain '(G4) 'E3) 
(explain '(G5) 'E4) 
(explain '(G3) 'E6) 
(explain '(GI) 'E7) 
(explain '(G2) 'E9) 
(explain '(GI) 'EJO) 
(explain '(G7) 'EJ2) 
(explain '(G8) 'EJ3) 
(explain '(GI) 'EJ4) 

The case for Peyer's innocence 
(explain '(II) 'El) 
(explain '(12) 'E4) 
(explain '(12) 'E5) 
(explain '(13) 'E6) 
(explain '(14) 'E7) 
(explain '(14A) 'E8) 
(explain '(14A) '14) 
(explain '(15) 'E9) 
(explain '(16) 'EJO) 
(explain '(16) 'Ell) 
(explain '(17) 'E 12) 
(explain '(17) 'EJ3) 
(explain '(II EIS) 'EJ4) 
(explain '(II) 'EJ6) 
(explain '(18) 'EJ7) 

Contradictions 
(contradict 'GI 'II) 
(contradict 'G5 '12) 
(contradict 'G7 '17) 
(contradict 'GI '18) 
(contradict ·c2 '15) 
(contradict 'G3 '13) 

Data 
(data '(El E2 E3 E4 E5 E6 E7 E8 E9 EIO Ell El2 E!3 El4 

EIS El6 El7)) 

that oxygen is combined with them? It would be l if the 
hypothesis entailed the evidence, but it does so only with 
the aid of the additional hypothesis that oxygen has 
weight, and some unstated background assumption about 
conservation of weight. To calculate the conditional prob­
ability, then, we need to be able to calculate the con­
junctive probability that oxygen has weight and that 
oxygen combines with burning objects, but these propo­
sitions are dependent to an unknown degree. Moreover, 
what is the probability that the evidence is correct'/ In 
contrast to the difficulty of assigning probabilities to these 
propositions, the coherence relations established by my 
principles are easily seen directly in arguments used by 
scientists in their published writings. When frequencies 
are available because of empirical studies, probabilistic 
belief networks can be much more finely tuned than my 
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coherence networks, but they are ill-suited for the kinds 
of nonstatistical theory evaluation that abounds in much 
of science and everyday life. 

One clear advantage to the probabilistic approach is 
that the properties of probabilities are naturally under­
stood using the axioms of probability and their natural 
interpretation in terms of games of chance. Acceptability, 
as indicated in ECHO by activation levels, has no such 
precise interpretation. (See section 10.2 for further dis­
cussion of probability versus acceptability.) 

8.3. Explanation-based learning. In machine learning, a 
rapidly growing part of AI, the term "explanation-based" 
is used to distinguish cases of knowledge-intensive learn­
ing from cases of simple learning from examples (see, for 
example, De Jong & Mooney 1986). Rajamoney and De­
Jong (1988) discuss the problem of "multiple explana­
tions" and describe a program that does simulated experi­
ments to select an explanatory account. This program is 
Popperian in spirit, in that the experiments concerning 
electricity and heat flow serve to refute all but one of the 
competing hypotheses. (Science is rarely so neat; see 
sections 4.4 and 10.4.) Systems that deal with more 
complex theories than those occurring in Rajamoney and 
De Jong's system will need a more comparative method of 
choosing among multiple explanations such as that found 
in ECHO. 

Recently, there has been growing attention in AI to 
"abduction," construed as the construction and selection 
of competing explanatory hypotheses. (Peirce applied 
"abduction" only to hypothesis formation, but the term is 
used in many quarters to apply to hypothesis evaluation 
as well.) Abduction has been investigated in the domains 
of medical diagnosis (Josephson et al. 1987; Pople 1977; 
Reggia et al. 1983), natural language understanding 
(Hobbs et al. 1988), and folk psychology (O'Rorke et al. 
1988). My account shares with these models the aim of 
finding the most comprehensive explanation, but it dif­
fers in both theory and implementation. The biggest 
theoretical difference is that my principles of explanatory 
coherence also favor hypotheses that are explained and 
fare well on considerations of simplicity and analogy. 
Leake (1988) describes a program for evaluating indi­
vidual explanations, a problem different from selecting a 
hypothesis on the basis of how well it explains a wide 
range of evidence. 

9. Implications for psychology 

The theory of explanatory coherence described here is 
intended to describe approximately the way people rea­
son concerning explanatory hypotheses (see section 10.5 
for further discussion of the descriptive and normative 
character of the theory). The psychological relevance of 
explanatory coherence is evident in at least three impor­
tant areas of psychological research: attribution theory, 
discourse processing, and conceptual change. After 
sketching how explanatory coherence is germane to these 
topics, I shall illustrate the testability of the ECHO model. 

9.1. Attribution. Because the inferences that people make 
about themselves and others generally depend on causal 
theories, social psychology is a very rich domain for a 
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Figure 18. Network representing the Peyer trial. 1-17 are evidence units. C 1-G8 represent hypotheses concerning Peyer' s guilt; 
11-18 concern his innocence. Solid lines are excitatory links; dotted lines are inhibitory. 

theory of explanatory coherence, and attribution theory 
has been a major focus of research for several decades. 
Research on attribution "deals with how the social per­
ceiver uses information in the social environment to yield 
causal explanations for events" (Fiske & Taylor 1984, p. 
21). Much of the theorizing about attribution can be 
understood in terms of explanatory coherence. For exam­
ple, we can interpret the correspondent inference theory 
of Jones and Davis (1965) as saying that we accept hypoth­
eses about the dispositional attributes of other people on 
the basis of the hypotheses providing coherent explana­
tions of their behavior. Jones and Davis's discussion of the 
analysis of noncommon effects can be understood as 
saying that we infer that someone has one of a set of 
intentions because that intention explains some aspects of 
their behavior that the other intentions do not. Our 
inferences about other people's dispositions will also 
depend on the available alternative explanations of their 
behavior, such as coercion, social desirability, social role, 
and prior expectations. Explanatory coherence theory 
does not address the question of how people form these 
kinds of hypotheses, but ii does show how people can 
select from among the hypotheses they have formed. I 
conjecture that if cases of attributional inferences were 
analyzed in sufficient detail to bring out the relevant data 
and hypotheses, preferences for situational or disposi­
tional explanations would follow from the nature of the 
explanatory networks. 

As we saw in the preppy murder trial, jurors often have 
to infer the intentions of witnesses and of the accused. 
Pennington and Hastie (1986; 1987) have interpreted the 
results of their experiments on juror decision making by 
hypothesizing that jurors make judgments based on con­
siderations of explanatory coherence; their cases look ripe 
for ECHO analysis. Of course, ECHO does not model all the 
kinds of reasoning involved in these experiments. In 
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particular, it does not model how the jurors process the 
statements about evidence and combine them into ex­
planatory stories. But it does give an account of how 
jurors choose between stories on the basis of their explan­
atory coherence. 

9.2. Discourse processing. The problem of recognizing 
intention in utterances can he understood in terms of 
explanatory coherence. 2 Clark and Lucy (1975) advocated 
a stage model of comprehension, according to which a 
literal meaning for an utterance is calculated before any 
nonliteral meanings are considered. In contra'it, Gibbs 
(1984) and others have argued that hearers are able to 
understand that "Can you pass the salt?" is a request, 
without first interpreting it as a question. In explanatory 
coherence terms, we can think of competing hypotheses 
- that the utterance is a request and that it is a question -
as simultaneously being evaluated with respect to what 
they explain and how they themselves are explained. To 
take an extreme example, the titterance might even he 
construed as an insult if it was expressed in a nasty tone of 
voice and if we had reason to believe that the utterer 
wanted to he insulting. Parallel evaluation of the different 
explanations of the utterance results in an appropriate 
interpretation of it. 

Trabasso et al. (1984) have argued that causal co­
hesiveness is very important for story comprehension. 
They analyze stories in terms of networks of causally 
related propositions that are similar to ECHO's explanato­
ry networks except that there are no links indicating 
contradictions. Comprehension differs from theory eval­
uation in lacking easily identified alternatives competing 
for acceptance. Still, it is possible that some mechanism 
similar to ECtto's way of activating a subset of mutually 
coherent propositions may be involved in reaching a 
satisfactory understanding of a story. Text comprehen-
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Figure 19. Connectivity of the unit GI, representing Peyer's guilt. The numbers under the units are their activation values after the 
unit has settled. Thick lines indicate excitatory links; thin lines indicate inhibitory links. Numbers on the lines indicate the weights on 
the links. 

sion obviously involves many processes besides in­
ferences about causal or explanatory coherence, but 
ECHO-like operation may nevertheless contribute to the 
necessary task of appreciating the causal cohesiveness of a 
story. 

9.3. Belief revision and conceptual change. Ranney and 
Thagard (1988) describe the use of ECHO to model the 
inferences made by naive subjects learning elementary 
physics by using feedback provided on a computer dis­
play (Ranney 1987). Subjects were asked to predict the 
motion of several projectiles and then to explain these 
predictions. Analyses of verbal protocol data indicate that 
subjects sometimes underwent dramatic belief revisions 
while offering predictions or receiving empirical feed­
back. ECHO was applied to two particularly interesting 
cases of belief revision with propositions and explanatory 
relations based on the verbal protocols. The simulations 
captured well the dynamics of belief change as new 

evidence was added to shift the explanatory coherence of 
the set of propositions. 

The theory of explanatory coherence sketched here has 
the capacity to explain major conceptual changes such as 
those that have been hypothesized to occur in scientific 
revolutions (Kuhn 1970; Thagard, in press b) and in 
children (Carey 1985). Because ECHO evaluates a whole 
network of hypotheses simultaneously, it is capable, 
when new data are added, of shifting from a state in which 
one set of hypotheses is accepted to a state in which an 
opposing set is accepted. This shift is analogous to the 
Gestalt switch described in section 3, except that scien­
tists rarely shift back to a rejected view. Developmental 
psychologists have speculated about the existence of 
some kind of "transition mechanism" that could shift a 
child forward from a primitive conceptual scheme to an 
advanced one. We currently have insufficient experimen­
tal data and theoretical understanding to know whether 
knowledge development in children has the somewhat 
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Figure 20. Activation history of the Peyer network. Each graph shows the activation of a unit over ,54 cycles of updating, on a scale of 
-1 to 1, with the horizontal line indicating the initial activation of 0. 

precipitous nature attributed to scientific revolutions. 
But if children do undergo dramatic changes in concep­
tual systems because they have acquired a more coherent 
way of understanding their worlds, then ECHO may be 
very useful for modeling the transition. 

9.4. Testability. So far, my discussion of the psycholngical 
relevance of ECHO has been merely suggestive, showing 
that explanatory coherence judgments may be plausibly 
considered to contribute to important kinds of inferential 
behavior. A defense of ECHO as a psychplogical model, 
however, will require controlled experiments that pro­
vide a much finer-grained evaluation of the theory of 
explanatory coherence. Fortunately, there appears to be 
great potential for testing explanatory coherence theory 
and the ECHO model by comparing the performance of 
human subjects with ECHO-based predictions about 
qualitative and quantitative features of the acceptance 
and rejection of hypotheses. Michael Ranney and I are 
planning several studies in which subjects will he given 
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textual descriptions of scientific and legal debates. We 
want to determine whether, when ECHO is run with 
inputs derived from subjects' own analyses of debates, 
the analyses predict their conclusions. We also want to 
determine whether manipulating textual descriptions of 
evidence, explanations, and contradictory hypotheses 
will affect the confidence that subjects have in different 
hypotheses in a way that resembles how manipulations 
affect ECHO's activation levels. It will also he interesting 
to find out whether important transitional points in the 
amount of evidence and explanation that tend to tip 
ECHo's activations over to new sets of accepted beliefs 
correspond to major shifts in subjects' beliefs at the same 
points. Such transitions, in both subjects and ECHO, arc 
described in Ranney and Thagard (1988). 

The methodology here is to use ECHO to test the 
psychological validity of the theory of explanatory co­
herence embodied in the seven principles in section 2.2. 
These principles in themselves are too general to have 
direct experimental consequences, but their implemen-



tation in ECHO makes possible very detailed predictions 
about tbe conclusions people will reach and tbe relative 
degree of confidence they will have in those conclusions. 
Merely proposing experiments does not, of course, show 
tbe psychological validity oftbe theory or tbe model, but 
it does sbow their joint testability. Tbe theory of explana­
tory coherence presented in this paper has been well 
explored computationally, but I bope tbe above section 
shows tbat it is also suggestive psychologically. 

10. Implications for philosophy 

In pbilosopby, a theory of explanatory coherence is po­
tentially relevant to metaphysics, epistemology, and tbe 
philosophy of science. In metaphysics, a coherence theo­
ry of truth, according to which a proposition is said to he 
true if it is part of a fully coherent set, bas been advo­
cated by idealist pbilosopbers sucb as Bradley and Re­
scber (Bradley 1914; Rescber 1973; see also Cohen, L. J. 
1978). In epistemology, tbe view tbatjustified reasoning 
involves the best total explanatory account has been 
urged by Harman (1973; 1986) and contested by Gold­
man (1986) and Lehrer (1974). Tbe theory of explanatory 
coherence in this paper is not aimed primarily at ques­
tions of truth or justification, but rather at the philoso­
phy of science and of law, illuminating tbe kinds of 
reasoning used to justify the acceptance and rejection of 
scientific and legal bypotbeses. The account of explana­
tory coherence offered here is as compatible with a 
correspondence theory of truth - according to wbicb tbe 
truth of a proposition depends on its relation to an 
independent reality - as it is witb a theory tbat attempts 
to define truth in terms of coherence. 

10.1. Hollsm. A major concern in epistemology and phi­
losophy of science concerns whether inference is holistic. 
According to Quine (1961, p. 41), "our statements about 
the external world face the tribunal of sense experience 
not individually but only as a corporate body." In a similar 
vein, Harman (1973, p. 159) writes tbat "inductive in­
ference must be assessed with respect to everything one 
believes." Behind these holistic views is the antifounda­
tionalist assumption that it is impossible to provide iso­
lated justifications for isolated parts of our system of 
beliefs. Quine's position is based on his rejection of the 
analytic-synthetic distinction and on the view of Duhem 
(1954) tbat deducing an observation statement from a 
bypotbesis always involves a complex of other bypotb­
eses, so that no hypothesis can be evaluated in isolation. 
Because predictions are usually obtained from sets of 
hypotheses, observations that contradict the predictions 
do not provide grounds for rejecting any particular hy­
pothesis, only for concluding tbat there is at least one false 
hypothesis. Harman argues that reasoning is inference to 
the best explanation, which includes both inference to 
bypotbeses tbat explain tbe evidence and inference to 
what is explained. Inferential holism is therefore sug­
gested by tbe following considerations: 

(1) Hypotheses cannot be refuted and confirmed in 
isolation. 

(2) Hypothesis evaluation must take into account the 
total sum of relevant evidence. 

(3) Tbe acceptability of a proposition is a function not 
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only of wbat it explains but also of its being explained. 
Unfortunately, bolism brings many problems witb it. 

Hegel (1967, p. 81) said tbat "tbe true is tbe whole," but 
be insisted tbat it should not be taken to be a crude, 
undifferentiated whole. If sets of bypotbeses must be 
evaluated together, and everything is potentially relevant 
to everything else, how can we make a reasonable judg­
ment about which hypotheses to maintain and which to 
reject? Kuhn's (1970) influential account of theory change 
as shifts in whole paradigms bas been taken by some to 
imply tbat there is no rationality in science. Fodor (1983) 
bas concluded from Quine an bolism not only tbat pbiloso­
pbers bave failed to provide a reasonable account of 
scientific confirmation, but even that cognitive science is 
unlikely ever to provide an account of such central psy­
chological processes as hypothesis selection and problem 
solving (see Holland et al. 1986, Cbap. 11, for a rebuttal). 

My theory of explanatory coherence and its implemen­
tation in ECHO are holistic in that the acceptability of a 
bypotbesis potentially depends on its relation to a whole 
complex of bypotbeses and data. But there is nothing 
mystical about how ECHO uses pairwise relations oflocal 
coherence to come up with global coherence judgments. 
Although evidence units can be deactivated, just as data 
are sometimes ignored in scientific practice, the evidence 
principle gives some priority to the results of observation. 

Altbougb ECHO does not exhibit simplistic Popperian 
falsification, it need not succumb to the various strategies 
that can be used to save a hypothesis from refutation. The 
strongest direct evidence against a hypothesis is pointing 
out that it has implications that contradict what has been 
observed. One way of saving the hypothesis from an 
objection of this sort is to use an auxiliary hypothesis to 
explain away the negative evidence. Section 4.6 showed 
how simplicity considerations can prevent this strategem 
from working. Another way of saving a hypothesis in the 
face of negative evidence is to modify its cobypotheses. As 
Duhem and Quine pointed out, if HI and H2 together 
imply some NE! that contradicts a datum El, tben logic 
alone does not tell whether to reject HI, H2, or both. In 
ECHO, which hypotheses are deactivated depends on 
other relations of explanatory coherence. If HI contrib­
utes to fewer explanations than H2, or if Hl contradicts 
another highly explanatory hypothesis, H3, then HI will 
be more likely to be deactivated than H2. 

Although ECHO makes it possible for a set of hypotheses 
to be accepted or rejected as a whole, it also admits the 
possibility of more piecemeal revision. Perrin (1988, p. 
115) reports that the conversion of phlogiston theorists to 
the oxygen theory sometimes took several years, with the 
converts gradually accepting more and more of La­
voisier's views. ECHO's networks such as the oxygen­
phlogiston one shown in Figure 9 do not connect every­
thing to everything else. Explanatory relations may pro­
duce relatively isolated packets of coherent hypotheses 
and evidence; these may sometimes be accepted or re­
jected independent of the larger theory. 

10.2. Probability. My account of theory evaluation con­
trasts sharply with probabilistic accounts of confirmation 
that have been influential in philosophy since Carnap 
(1950). Salmon (1966), for example, advocates the use of 
Bayes's theorem for theory evaluation, which, if P(H,E) 
stands for the probability ofH given E, can be written as: 
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P(H E) ~ P(H)P(E,H) 
' P/E) , (2) 

Consider what would be involved in trying to apply this to 
Lavoisier's argument against the phlogiston theory. We 
would have to take each hypothesis separately and calcu­
late its probability given the evidence, but it is totally 
obscure how this could be done. Subjective probabilities 
understood as degrees of belief make sense in contexts 
where we can imagine people betting on expected out­
comes, but scientific theory evaluation is not such a 
context. How could we take into account that alternative 
explanations are also being offered by the phlogiston 
theory? The issue is simplified somewhat if we consider 
only likelihood ratios for the oxygen and phlogiston theo­
ries - that is, the ratio of P(E, oxygen) to P(E, phlogiston) 
- but we still have the problem of dealing with the 
probability of the conjunction of a number of oxygen 
hypotheses whose degree of dependence is indetermi­
nate. As 1 argued in section 8.2, probabilities have mar­
ginal relevance to qualitative explanatory inferences in 
science and law. 

My account of coherence based on explanation con­
trasts markedly with probabilistic accounts. A set of 
propositions, S, is probabilistically coherent if there is a 
real-valued function that gives an assignment of values to 
the propositions consistent with the axioms of probability 
(Levi 1980). This constraint is very different from the ones 
governing explanatory coherence that ECHO shows to be 
sufficient for accepting and rejecting hypotheses. The 
real numbers that are degrees of activation of propositions 
in ECHO are clearly not probabilities, because they range 
from 1 to -1, like the certainty factors in the AI expert 
system MYCIN (Buchanan & Shortliffe 1984). Note that 
two contradictory propositions can both have activation 
greater than 0, if neither is substantially more coherent 
with the evidence than the other. 

Probabilities, ranging from Oto 1, are often interpreted 
as degrees of belief, but this interpretation obscures the 
natural distinction between acceptance and rejection, 
belief and disbelief 1 do not just have low confidence in 
the proposition that the configuration of the stars and 
planets at birth affects human personality; 1 reject it as 
false. One advantage of probability theory, however, is 
that it provides rules for calculating the probabilities of 
conjunctions and disjunctions. ln contrast, the accept­
ability (in my sense) of "p and Q" and "p or Q" is not 
defined, because such composite propositions do not, in 
general, figure in explanations. One can concoct cases of 
disjunctive explanations ("He said he was flying in from 
either New York or Philadelphia, and the weather is very 
bad in both places, so that explains why he's delayed"), 
but 1 have never encountered one in a scientific or legal 
context. Explanations depending on conjunctions of co­
hypotheses are common, but ECHO has no need to calcu­
late the acceptability of "p and Q," because relations of 
explanatory coherence tell you all you need to know about 
P and Q individually. The apparent advantage of proba­
bility theory is much weakened in practice by the fact that 
the calculation of conjunctive and disjunctive proba­
bilities requires knowledge of the extent to which the two 
propositions are independent of each other. Such infor­
mation is easily gained when one is dealing with games of 
chance and in other cases where frequencies are avail-
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able, but it is hard to come by in cases of scientific and 
legal reasoning: For Lavoisier, what was the conditional 
probability of OHl (pure air contains oxygen principle) 
given OH2 (pure air contains matter of fire and heat)? 

10.3. Confirmation theory. My view of theory evaluation 
based on explanatory coherence can also be contrasted 
with confirmation theory, according to which a hypoth­
esis is confirmed by observed instances (Glymour 1980; 
Hempel 1965). The cases 1 discussed in detail in this 
paper are typical, 1 would argue, of the general practice in 
scientific argumentation that theories are not justified on 
the basis of particular observations that can be derived 
from them. Rather, observations are collected together 
into generalizations. These generalizations are some­
times rough, describing mere tendencies. ln this process, 
particular observations can be tossed out as faulty or 
irrelevant. Theory evaluation starts with the explanation 
of the generalizations, not with particular observations. 
Lavoisier, for example, did not defend his theory by 
pointing to particular confirming observations such as his 
measurements indicating that a sample of burned phos­
phorus gained weight on a particular day in 1772. Rather, 
his central claim in defense of his theory is that it explains 
why objects in general gain weight when burned. 
Qualitative confirmation theory also does not in itself 
suggest how simplicity, analogy, competition, and being 
explained can play a role in theory evaluation. 

10.4. Explanation Ism and conservatism. Now let me turn 
to a brief discussion of philosophical views that are much 
closer to my account of explanatory coherence. My dis­
cussion of hypotheses is compatible with the "explana­
tionism" of Harman (1986) and Lycan (1988). Unlike 
them, however, I am not trying to give a general account 
of epistemic justification: I hold that there are other 
legitimate forms of inference besides inference to the best 
explanation. The principle of data priority assumes that 
results of observation start with a degree of acceptability 
that derives from their having been achieved by methods 
that lead reliably to true beliefs. This justification is closer 
to the "reliabilism" of Goldman (1986), a position which 
has problems, however, in justifying the acceptance of 
hypotheses (Thagard, in press a). My own view of justifi­
cation is that explanation and truth are both epistemic 
goals that need to be taken into account as part of a larger 
process of justifying inferential strategies (Thagard 1988a, 
Chap. 7). 

The other major difference I have with Harman and 
Lycan is that they both advocate conservatism as a sup­
plement to considerations of explanatory coherence. Har­
man says we should try to maximize explanatory co­
herence while minimizing change. 1 view conservatism as 
a consequence of explanatory coherence, not as a separate 
factor in brief revision. ln ECHO, we get a kind of conser­
vatism about new evidence, as 1 showed in section 4.2. 
For ECHO, new evidence that does not cohere with what 
has been accepted is not treated equally with old evi­
dence. ln addition to conservatism about new evidence, 
there is a kind of conceptual conservatism inherent in any 
cognitive system: lf an alternative theory requires a 
network of concepts which differs from my own, then 1 
cannot evaluate the new system until 1 have effortfully 
acquired that system of concepts (Thagard, in press h). 



Hence, an existing set of views will be conservatively 
favored until the alternative is fully developed. 

The conservatism favored by Harman and Lycan seems 
most plausible, not for actual scientific cases, but for 
imagined ones in which a trivial variant of an accepted 
theory appears as an alternative. Suppose Hl gets high 
activation as the best explanation of El and E2, and then 
H2 is proposed to explain them both. If Hl and H2 are 
contradictory, then ECHO readjusts activation so that Hl 
and H2 are virtually at the same level. What if H2 is just a 
trivial variant of Hl? Then H2 does not really contradict 
Hl, so they can both be highly active without any prob­
lem. One might worry that the system will quickly be 
cluttered with trivial variants, but in a full computational 
system, that would be taken care of by having pragmatic 
constraints on what hypotheses are generated (Holland et 
al. 1986). 

As a final comparison, consider the complementary 
views on explanatory unification of Kitcher (1981). He 
describes how powerful theories such as Darwin's and 
Newton's provide unification by applying similar patterns 
of explanation to various phenomena. That this should 
contribute to explanatory coherence is a consequence of 
my theory, for if Hl, H2, and H3 are all used to explain 
the evidence, we get the result not just that each coheres 
with the evidence, but also that they cohere with each 
other. Moreover, degrees of coherence are cumulative, 
so that the more two hypotheses participate in explaining 
different pieces of evidence, the more they cohere with 
each other. (See the simple example in section 4.5.) 

The major philosophical weakness of my account of 
explanatory coherence concerns the nature of explana­
tion. This paper has bypassed the crucial question of what 
explanation is. Fortunately, to apply the principles of 
explanatory coherence and to generate input for ECHO, it 
is not necessary to have an exact analysis of the nature of 
explanation. We can take for granted the explanatory 
relations described by scientists such as Lavoisier and 
Darwin, or we can get an approximation using a computa­
tional system such as PI, as described in section 7. For an 
outline of what a computational account of explanation 
might look like, see Thagard (1988a, Chap. 3). 

10.5. The descriptive and the normative. Philosophy dif­
fers from psychology primarily in its concern with nor­
mative matters - how people ought to reason rather than 
how they do reason. For some philosophers, any analysis 
that smacks of psychology has disqualified itself as epis­
temology. From this perspective, one faces the dichoto­
my: Is my theory of explanatory coherence normative or 
is it merely descriptive? In accord with Goldman (1986) 
and Harman (1986), I reject this rigid dichotomy, main­
taining that descriptive matters are highly relevant to 
normative issues (see Thagard 1988a, Chap. 7). The seven 
principles of explanatory coherence are intended to cap­
ture both what people generally do and what they ought 
to do. By no means do they constitute a full theory of 
rationality. There are undoubtedly cases where people 
deviate from explanatory coherence - for example, pre­
ferring a hypothesis because it makes them happy rather 
than because of the evidence for it (Kunda 1987). Racial or 
other types of prejudice may prevent jurors from taking a 
piece of evidence seriously. Various other biases (Nisbett 
& Ross 1980) may intrude to throw off considerations of 
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explanatory coherence. Much psychological experimen­
tation and modeling is needed to show when people's 
reasoning can be accounted for in terms of explanatory 
coherence and when it is affected by other factors. This 
work can go hand in hand with refinements in the nor­
mative aspects of the theory. 

11. Conclusion 

I conclude with a brief survey of the chief accomplish­
ments of the theory of explanatory coherence offered 
here. 

First, it fits directly with the actual arguments of 
scientists such as Lavoisier and Darwin who explicitly 
discuss what competing theories explain. There is no 
need to postulate probabilities or contrive deductive 
relations. The theory and ECHO have engendered a far 
more detailed analysis of these arguments than is typ­
ically given by proponents of other accounts. Using the 
same principles, it applies to important cases of legal 
reasoning as well. 

Second, unlike most accounts of theory evaluation, this 
view based on explanatory coherence is inherently com­
parative. If two hypotheses contradict each other, they 
incohere, so the subsystems of propositions to which they 
belong will compete with each other. As ECHO shows, 
successful subsystems of hypotheses and evidence can 
emerge gracefully from local judgments of explanatory 
coherence. 

Third, the theory of explanatory coherence permits a 
smooth integration of diverse criteria such as explanatory 
breadth, simplicity, and analogy. ECHO's connectionist 
algorithm shows the computability of coherence rela­
tions. The success of the program is best attributed to the 
usefulness of connectionist architectures for achieving 
parallel constraint satisfaction, and to the fact that the 
problem inherent in inference to the best explanation is 
the need to satisfy multiple constraints simultaneously. 
Not all computational problems are best approached this 
way, but parallel constraint satisfaction has proven to be 
very powerful for other problems as well - for example, 
analogical mapping (Holyoak & Thagard, in press). 

Finally, my theory surmounts the problem of holism. 
The principles of explanatory coherence establish pair­
wise relations of coherence between propositions in an 
explanatory system. Thanks to ECHO, we know that there 
is an efficient algorithm for adjusting a system of proposi­
tions to turn coherence relations into judgments of ac­
ceptability. The algorithm allows every proposition to 
influence every other one, because there is typically a 
path of links between any two units, but the influences 
are set up systematically to reflect explanatory relations. 
Theory assessment is done as a whole, but a theory does 
not have to be rejected or accepted as a whole. Those 
hypotheses that participate in many explanations will be 
much more coherent with the evidence, and with each 
other, and will therefore be harder to reject. More 
peripheral hypotheses may be deactivated even if the rest 
of the theory they are linked to wins. We thus get a 
holistic account of inference that can nevertheless differ­
entiate between strong and weak hypotheses. Although 
our hypotheses face evidence only as a corporate body, 
evidence and relations of explanatory coherence suffice to 
separate good hypotheses from bad. 
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Table 9. Algorithms for processing input to ECHO 

I. Input: (PROPOSITION NAME SENTENCE) 
Create a unit called NAME and an index for it. 
Store SENTENCE with NAME. 

2. Input: (EXPLAIN LIST-OF-PROPOSITIONS 
PROPOSITION) 

Make excitatory linksa between each member of LIST­
OF-PROPOSITIONS and PROPOSITIONS. 

!vfake excitatory linksa between each pair of LIST-OF­
PROPOSITIONS. 

Record what explains what. 
3. Input: (CONTRADICT PROPOSITON-1 

PROPOSITION-2) 
Make an inhibitory link between PROPOSITION-I and 

PROPOSITION-2. 
4. Input: (DATA LIST-OF-PROPOSITIONS) 

For each member of LIST-OF-PROPOSITIONS, create 
an excitatory link from the special evidence unit with 
the weight equal to the data excitation parameter, 
unless the member is itself a list of the form 
(PROPOSITION WEIGHT). In this case, the weight of 
the excitatory link between the special unit and 
PROPOSITION is WEIGHT. 

If there are unexplained data propositions, increase the 
decay rate parameter by multiplying it by the ratio of 
the total number of evidence proppositions to the 
number of explained evidence propositions. 

aThe weights on these links are determined by equation 3 
given in the text. Weights are additive: If more than one 
EXPLAIN statement creates a link between two proposition 
units, then the weight on the link is the sum of the weights 
suggested by both statements. 

12. APPENDIX 

Technlcal detalls of ECHO 

For those interested in a more technical description of how 
ECHO works, this appendix outlines its principle algorithms and 
describes sensitivity analyses that have been done to determine 
the effects of the various parameters on ECHo's petformance. 

12.1. Algorlthms. As I described in section 4.1, ECHO takes as input 
PROPOSITION, EXPLAIN, CONTRADICT, and DATA 
statements. The basic data structures in ECHO are LISP atoms 
that implement units with property lists that contain informa­
tion about connections and the weights of the links between 
units. Table 9 describes the effects of the four main kinds of 
input statements. All are very straightfotward, although the 

Table 10. Algorithm,; for network operation 

l. Running the network: 
Set all unit activations to an initial starting value (typically 

.01), except that the special evidence unit is clamped at l. 
Update activations in accordance with (2) below. 
If no unit has changed activation more than a specified 

amount (usually .001), or if a specified number of 
cycles of updating have occurred, then stop. 

Print out the activation values of all units. 
2. Synchronous activation updating at each cycle: 

For each unit u, calculate the new activation u in accord 
with equations 3 and 4 in the text, considering the old 
activation of each unit u' linked to u. 

Set the activation of u to the new activation. 

EXPLAIN statements require a calculation of the weights on the 
excitatory links. The equation for this is: 

weight(P,Q) = default weight I (number of cohypotheses 
of P)(simplicity impact) (3) 

Here simplicity impact is an exponent, so that increasing it 
lowers the weight even more, putting a still greater penalty on 
the use of multiple assumptions in an explanation. In practice, 
however, I have not found any examples where itwa.'i interest­
ing to set simplicity impact at a value other than l. 

After input has been used to set up the network, the network 
is run in cycles that synchronously update all the units. The 
basic algorithm for this is shown in Table 10. For each unitj, the 
activation aj' ranging from -1 to l, is a continuous function of 
the activatIOn of all the units linked to it, with each unit's 
contribution depending on the weight w!f of the link from unit i 
to unitj. The activation of a unitj is updated using the following 
equation: 

a.(t + I)= a{t)(l-O) +{net/max-ap!! if netj > 0 (4) 
1 1 net/a/t)-min) otherwise 

Here 8 is a decay parameter that decrements each unit at every 
cycle, min is minimum activation (-1), max is maximum ac­
tivation (1), and netj is the net input to a unit. This is de­
fined by 

(5) 

Repeated updating cycles result in some units becoming acti­
vated (getting activation> 0) while others become deactivated 
(activation < 0). 

12.2. Sensitivity analyses. Multiple connected localist networks 
sometimes exhibit instability, failing to settle into stable activa­
tion patterns because complexes of mutually excitatory units 
produce activation oscillations. As Figures 11, 14, 17, and 20 
suggest, ECHo's networks are generally stable, usually requiring 

Table IL Network infonnation for four major examples 

Cycles Excitation Inhibition 
Units Links to settle ceiling floor 

Lavoisier 20 49 107 .13 -.18 
Darwin 29 70 49 .06 -.16 
Chambers 34 59 63 .17 -.07 
Peyer 34 54 78 .08 -.13 
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fewer than 100 units of updating for all units to reach asymptotic 
levels. Pearl (1987) devotes considerable effort to rearranging 
probabilistic networks so that they will be singly connected and 
hence stable. Fortunately, the networks set up hy ECIIO in 
accord with the theory of explanatory coherence do not require 
any alteration to settle into stable activations. Whereas a proba­
bilistic network may need links specifying the conditional prob­
abilities of p given q, q given r, r given s, ands given p, such 
cyclic paths rarely arise in ECHO because the "explain" relation 
sets up hierarchies of units rather than cycles. ECHO undergoes 
activation osc~lations only when the excitation parameter is 
high relative to inhibition, for example, in the Chambers case, if 
excitation has a value of .17 instead of .05. ECHO is efficient: In 
each of the four major examples, a complete run, including 
network creation and settling, takes less than a minute of cpu 
time on a Sun 3/75 workstation. Because networks with hun­
dreds more units and thousands more links than EC11o's net­
works have run successfully in ACME, a similar program that 
does analogical mapping (Holyoak & Thagard, in press), I sec no 
problem in scaling ECHO up to run on much larger examples. 

Table 11 shows, for each major example, the size of the 
networks created and the number of cydes of activation updat­
ing it takes for them to settle using the default parameter values 
of .05 for excitation, - .2 for inhibition, .1 for data excitation, and 
.05 for decay. Experiments have shown that ECHO exhibits the 
behavior described in the text over a wide range of values for 
these parameters. For example, in the Lavoisier example, no 
important differences in the results occur if the decay, excita­
tion, inhibition, and data excitation parameters arc all halved or 
doubled. In general, lowering positive parameters and making 
inhibition closer to 0 tends to prolong settling time. Increasing 
decay tends to flatten the activation curves, both positive and 
negative, keeping them closer to 0. Increasing data excitation 
leads evidence units to have higher asymptotic activation. Vary­
ing excitation and inhibition systematically reveals that there is a 
critical value for each. If excitation is high relative to inhibition, 
then the system shows much "tolerance" and does not deacti­
vate inferior hypotheses. Table 11 lists excitation ceilings and 
inhibition floors for the four major examples. The excitation 
ceilings are the maximum values that excitation can have with­
out activating units representing inferior hypotheses; inhibition 
here is constant at the default value of - . 2. The excitation values 
at which networks become unstable are well above these ceil­
ings. The inhibition floors are the minimum values that inhibi­
tion must have without failing to deactivate units representing 
inferior hypotheses; excitation here is constant at the default 
value of . 05. The excitation ceiling and the inhibition floor 
indicate the most important respects in which quantitative 
parameter changes in ECIIO have qualitative effects. Keep in 
mind that the excitation ceilings and inhibition floors listed in 
Table 11 are based on a fixed value for, respectively, inhibition 
and excitation. Varying these values will produce different floors 
and ceilings, so that the range of possible parameter values is 
much larger than Tahlc 11 portrays. 
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NOTES 
l. From here on, I shall he less careful about distinguishing 

between units and the propositions they represent. 
2. I owe this suggestion to Daniel Kimbcrg. 
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Explanation and acceptability 
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Thagard proposes a theory of explanatory coherence that is 
based on what he admits to be a primitive, undefined concept of 
explanation. It is an essential part of this theory that explanatory 
coherence is intimately tied to acceptability. ("We should ac­
cept propositions that are [ explanatorily] coherent with our 
other beliefs.") My challenge is this: Can such a theory work and 
be illuminating if explanation remains undefined? 

Let us consider two ways one might construe Thagard' s 
explanation sentences of the form "p explains Q." First, they 
might be construed simply as proposed explanations. For exam­
ple, we say that the Book of Genesis explains the origin of the 
universe. In saying this, we do not necessarily imply that the 
explanation is good, or correct, or that it even meets minimal 
standards that we have for explanations. We may simply mean 
that it has heen proposed by those who believe these things. 
(For a definition of this nonevaluative sense of '"explain," see 
Achinstein 1983, Chapters 2 and 3.) I doubt that Thagard has 
this sense of explanation in mind, because it bears no obvious 
connection to acceptability. 

Second, let us shift to an evaluative sense of explanation. 
Which one? This question needs to be raised because of a 
standard objection to explanatory accounts of acceptability. 
Suppose that we have a set of observed data and a hypothesis h 
that explains all of them. The objection to concluding that his 
acceptable on such grounds is that some incompatible hypoth­
esis h', which also explains the observed data, will usually he 
constructible. If so, then, unless h has some independent 
support, h is not acceptable, or at least no more so than h'. 

One standard form of explanation found particularly in the 
quantitative sciences involves deductive derivation. Suppose 
that data 0 1, 0 2 , . are deductively derivable from hypoth­
esis h together with background information b. The following 
probability theorem is provable: Ifh has at least one incompati­
ble competitor h' that together with b also entails O., 0 2 , . , 

and is such that p(h' lb)~ p(h/b), then for any n, no matter how 
large, p(h/O 1, . On & b) :5 .5. That is, if h has a competitor 
that entails the same data as h, and whose probability on the 
background information alone is at least as high as that of h, then 
the probability of h will not rise ahove t no matter how many 
data h entails. This holds even if scientists are unaware of the 
competitor h'. If the acceptability of a hypothesis requires a 
probability greater than ½, then, in such circumstances, h is not 
acceptable despite its success in entailing all the data and 
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despite the fact that proponents of h are unable to think of any 
competitor to h that entails all the data. Noris! sacred here. We 
can show, for example, that if there is such a competitor to h 
whose probability on bis at least .8, then h's probability cannot 
rise above . 2. 

Indeed, if h entails each of the Os, then it doesn't necessarily 
follow even that h's probability increases. If each of the Os is 
"old" evidence, known with certainty to be true, then h's 
probability remains constant. It increases if and only if the Os 
are new phenomena whose probability is less than l. The rub is 
that although h's probability rises as it entails more and more 
new phenomena, it may forever remain extremely low, much 
lower than that of a competitor, and fail to approach anything in 
the acceptable range. 

Thagard is dubious about assigning probabilities to scientific 
hypotheses, and in any case, he claims, rejection is different 
from low probability. I don't find these objections decisive. The 
competitive hypothesis theorem does not require that we be 
able to assign a precise probability to h or its competitor h'. It 
assumes only that h's probability on the background informa­
tion, whatever it is, is no greater than that of h'. In that case, 
whatever h's probability on the data is, it cannot get very high. 
Furthermore, although low probability is not necessarily the 
same as rejection, it is possible to give rules of acceptance and 
rejection that are based on probabilities (see Levi 1967). 
Thagard needs to demonstrate that there is some connection 
between his notion of explanation and acceptability. But with­
out some account of explanation (and of acceptability), I don't 
see that any connection is guaranteed. Thagard cannot simply 
assume-as he does in his Principle 6-that there is some reason­
able concept of explanation that insures acceptability. 

As far as explanation by deduction is concerned, Thagard 
makes it clear that, for other reasons, he ··assume(s) that expla­
nation is more restrictive than implication.'' But (assuming he 
does not deny that many explanations do involve deductive 
derivations), what additional conditions is he willing to impose? 
This question is crucial because not all plausible conditions will 
thwart the previous probability theorem. An important 
nineteenth-century proponent of an explanatory view of accept­
ability was William Whewell. He regarded the wave theory of 
light as acceptable not simply because it afforded derivational 
explanations of various observed optical phenomena, but be­
cause (a) the phenomena derived were not all of the same type 
(what he called "consilience"), and (b) the hypotheses of the 
theory that provided the explanation "run together" (as he put 
it) in a way that goes beyond simply explaining the data. Yet it is 
possible to show that such additional conditbns-though consid­
erably stronger than those imposed by the standard deductive 
model of explanation-are not sufficient to dodge the effects of 
the "competitor" probability theorem. (For details, see Achin­
stein, forthcoming.) 

Finally, there are, to be sure, evaluative conditions on expla­
nations that will insure the acceptability of the explanatory 
hypothesis-for example, require that the explanatory hypoth­
esis be true, or that it be highly probable given all the observed 
data (as does Hempel's, 1965, standard deductive model of 
explanation). The problem is that if these are the requirements 
added to derivability (or whatever else explanations are sup­
posed to exhibit), then explanation becomes redundant. If what 
we care about is h's acceptability, then h's truth or high proba­
bility will insure that. Why bring in explanation? 

468 BEHAVIORAL AND BRAIN SCIENCES (1989) 12:3 

When weak explanations prevail 

Carl Bereiter and Marlene Scardamalia 
Centre for Applied Cognitive Science, Ontario Institute tor Studies in 
Education, Toronto, Canada M5S 1V6 
Electronic mall: c_bereiter@utoroise.bitnel and 
scardamalia@utoroise.bitnet 

Thagard presents a psychologically interesting theory imple­
mented in a computer model so straightforward that other 
investigators can readily test its applications and limitations and 
even fiddle with its procedures. Our comments are stimulated 
by initial attempts to use ECHO to analyze arguments and as an 
educational device for application with children. 

Explanatory coherence shows us how strong theories win out 
over weak ones, even though they are more vulnerable to 
troublesome facts. If we examine instances where weak theories 
survive against stronger ones, however, we see a kind of argu­
ment that is not represented in Thagard' s theory, although it 
seems to play a predominant role in everyday thinking. Thagard 
presents a model of argument to the best explanation. The issue 
from this standpoint is, Does the hypothesis explain the facts? 
Bartlett (1958) concluded from his studies of everyday thinking 
that people are not much concerned with accounting for facts. 
Instead, they settle quickly on a belief and retain it as long as 
facts more or less support it. For them the issue is, Do the facts 
support the hypothesis? 

This latter kind of thinking has been prominent in the last two 
decades of debate about the heritability of intelligence. ln this 
debate, a relatively weak theory, environmentalism, has fared 
very well both in scientific circles and in popular opinion against 
a stronger heredity-plus-environment theory that purports to 
explain the environmentalist facts plus a number of others-such 
as the magnitudes of various kinship correlations, regressions to 
the mean, and within-family variability of IQ. (See Urbach, 
1974,) for an analysis of this controversy from a Lakatosian 
perspective.) The main thrust of environmentalist arguments 
has not been defending the explanatory power of environmen­
talist hypotheses but attacking the quality of evidence brought 
forth by hereditarians (Kamin 1974). It may be noted that 
present-day creationists are gathering a following by using the 
same kind of argument. Within cognitive science, a somewhat 
similar argument develops when people criticize the validity of 
thinking-aloud protocol data. And, of course, attacking the 
evidence is a major form of argument in court trials. 

These examples have in common a view of hypotheses as 
being upheld by data. Environmentalism and creationism win 
because their factual claims are unassailable, being mostly 
common knowledge, whereas those of the opposing theories are 
contestable. This is a radically different view from that taken by 
Thagard. If social scientists were to approach the heredi­
ty/ environment issue in a manner consistent with Thagard's 
theory, they would begin by agreeing that there are facts 
needing explanation-that so and so reported such and such 
correlation between the IQs of double-first cousins, and so 
forth. An argument like Kamin' s, which produces a different 
explanation for every fact, would fare poorly against an argu­
ment that explains all the facts from a few coherent hypotheses. 

Are we describing a kind of bad thinking that Thagard' s theory 
ought to help overcome, or is there some merit in this alter­
native approach to explanation? Both, we think, are true. In a 
"mature" scientific controversy, irrelevancies have been shaken 
out, and there remains a set of mutually recognized facts that 
need explaining. In such a situation, the stronger theory-the 
one best able to account for the recognized facts-ought to 
prevail. That is a situation that Thagard' s theory, implemented 
in ECHO, seems to handle nicely. In the murkier situations of 
ordinary life and the soft sciences, however, it is often uncertain 
whether the facts in need of explanation have been properly 
identified or are to be trusted. ln such cases, there may he 
reasons why a weaker theory should prevail. 



We have been investigating explanatory hypotheses in a case 
of special interest to Canadians, that of Ben Johnson, who was 
stripped of an Olympic gold medal for alleged use of anabolic 
steroids. The facts that need explaining consist mainly oflabora­
tory test results indicating steroid use. There are a number of 
other facts, however, that figure in some explanations-for in­
stance, that Johnson customarily drank sarsaparilla tea after a 
race, that the bag containing his flask of tea was unguarded 
during the race, and that strangers were seen in its vicinity. We 
may call these contextual facts. These facts themselves do not 
need explaining; there is nothing "suspicious" about them. 
Nevertheless, an explanation gains plausibility if it weaves these 
facts into its story. A simple "spiked sarsaparilla" theory fails 
because of its inability to account for laboratory results indicat­
ing long-term steroid use. But a more complex theory-which 
has Johnson taking steroids plus a masking drug, and enemies 
spiking his sarsaparilla in order to defeat the masking drug­
starts to sound like a contender because it not only accounts for 
the critical facts but also incorporates a variety of contextual 
facts. 

In criminal cases, contextual facts are typically used in argu­
ing motive, opportunity, and disposition to commit the crime. 
None of these are vital issues if there is only one explanation that 
satisfactorily accounts for the "suspicious" facts-that is, the facts 
recognized as needing explanation. But when alternative expla­
nations are tenable, the one that makes better use of the 
surrounding contextual facts is rightly to be preferred. Similar­
ly, the environmentalist explanation of IQ differences gains 
strength because it weaves in many contextual facts about 
cultural differences, social conditions, and historical anteced­
ents, whereas hereditarian hypotheses deal with little besides 
kinship data and test scores. Some environmentalists have 
woven in historical facts to support a conspiracy theory about 
hereditarians, thus casting a general cloud of suspicion over the 
hereditarians' factual claims-again, a common courtroom strat­
egy, but one that in its own way contributes greatly to the 
coherence of an argument. 

Although Thagard's theory does not deal with contextual 
facts, it seems that his ECHO program is quite happy to accom­
modate them. Perhaps contextual facts should receive less 
sustaining activation than facts needing explanation, and per­
haps the connection weight between hypotheses and facts that 
are merely used should be less than the weight between hypoth­
eses and facts that they explain. However, in our limited 
experiments with Thagard's examples and in our Ben Johnson 
case, there does not seem to be any need to modify activation 
levels or weights. Sensible results are obtained by treating all 
facts as equal and all positive connections as equal. For reasons 
to be given later, however, we do not regard this as a good sign. 

In another respect ECHO seems to he more limited than the 
theory it implements. To settle on a winner, ECHO needs 
contradictions, which enter the network as negative connection 
weights. Again, this is not a problem in a "mature" scientific 
controversy, where basic disagreements have been identified. 
But in many ambiguous or undeveloped areas of inquiry, there 
may he competing explanations that do not clearly conflict. They 
may occupy different levels of description, for instance. In such 
cases, ECHO can lead to unfortunate results. This difficultv, 
incidentally, was discovered by a group of 11-year-olds who 
were using ECHO to test their explanations in the Ben Johnson 
case. It is more easily illustrated, however, with Thagard's 
Darwin example. 

Suppose we enter with another hypothesis into the set of 
propositions constituting the Darwin case. Call it the Satanic 
hypothesis: 

The Devil is responsible for differences. 

This hypothesis contradicts the creationist hypothesis, but it 
does not contradict any Darwinian hypotheses. It doesn't ex­
plain any of the evidence, but on the other hand, it isn't 
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incompatible with any of the evidence either. When tested in 
competition with the Darwinian and creationist hypotheses, 
ECHO gives it a final activation level of .67, which puts it ahead of 
three of the five Darwinian hypotheses. It gains this status solely 
by virtue of contradicting a hypothesis that is defeated by other 
hypotheses. 

There seems to be two ways, then, in which Thagard' s theory 
and its ECHO implementation need to be augmented to deal with 
a larger range of explanatory problems. There needs to be a way 
to compare competing but noncontradictory hypotheses, es­
pecially hypotheses at different levels of description. And there 
needs to be a way to attribute coherence both to the explanation 
of facts by hypotheses and to the use of contextual facts in 
explanations. However, the theory ought to be able to dis­
tinguish between the two. Otherwise, elaborate stories that fail 
to account for crucial facts will tend to defeat incisive theories 
that explain crucial facts without reference to contextual infor­
mation. As educational researchers, we are particularly keen on 
the use of ECHO as a way of guiding students toward argument to 
the best explanation and away from the weaker kinds of explana­
tion that seem more prevalent. We were amazed in our initial 
trials to find elementary school children taking naturally to 
questions such as, "What hypotheses explain this fact?" and, 
"What facts does this hypothesis explain?" They quickly caught 
on to what ECHO was doing, saw it as reasonable, and became 
interested in experimenting with the effects of suppressing 
certain facts or introducing new hypotheses. Perhaps, as Bart­
lett concluded, human beings do not usually think this way. But 
we see reason to hope that they could learn to do so. 

Explanatory coherence as a psychologlcal 
theory 

P. C.-H. Cheng and M. Keane 
Human Cognition Research Laboratory, The Open University, Milton 
Keynes MK7 6AA, England 
Electronic mall: pch_cheng@vax.acs.ou.ac.uk and 
mt_keane@vax.acs.ou.ac.uk 

If Thagard' s theory is to be viewed as a psychological theory, its 
principles need to be amended considerably. Furthermore, the 
need for such amendments suggests that a purely parallel model 
may not be optimal. Two main problems are evident from the 
psychological perspective. 

First, any psychological theory must acknowledge human 
processing limitations. People are unlikely to have ECHo' s 
unlimited processing power to consider all of the interdepen­
dencies between a theory's propositions and the evidence. For 
instance, the jurors empaneled at a fraud trial will likely find the 
"propositions" involved difficult to evaluate because of the 
introduction of new concepts, the large quantity of evidence, 
and their interrelationships. A more realistic psychological ac­
count of theory evaluation would hence be one in which new 
propositions and evidence are gradually assimilated in a piece­
meal fashion. Such a view of theory evaluation is supported by 
the research of the new experimentalists (Ackermann 1985; 
Franklin 1986; Galison 1987; Hacking 1983) in the area of the 
philosophy of science, which contrasts with the holism espoused 
by Thagard. However, to achieve this sort of piecemeal evalua­
tion, ECHO would have to break the network up into smaller 
subsets of the complete set of propositions and evidence and to 
operate on those subsets in a more serial fashion. This intro­
duces several problems: 1. It seems unlikely that the combina­
tion of smaller subsets would aggregate to produce the same 
result as the complete set of propositions processed in parallel 
(because of the nature of such connectionist models). 2. There is 
also the attendant question of how the different subsets might be 
combined. 3. A further set of processes would be required to 

BEHAVIORAL ANO BRAIN SCIENCES (1989) 12c3 469 



Commentary/Thagard: Explanatory coherence 

select subsets for consideration, and these would have to be 
specified by the theory. 

Second, in the model, explanation is instantiated as links 
between the various units in the network. However, because 
the psychological processes that underlie explanation are not 
specified, one could just as well have substituted "connected to" 
or "associated with" for the term "explains" throughout the 
article and the model would not need to be changed. An 
adequate psychological theory must specify the processes in­
volved in ··explaining." In certain sciences, researchers spend a 
significant amount of time determining whether a proposition 
really explains something, weighing up strong and weak senses 
of a proposition, and attempting to separate ancillary, ad hoc 
proposals from the basic tenets of a theory. Thagard hints at this 
problem with the concept of explanation when he says that a 
causal sense of ··explain" was used in the analyses, but this is 
inconsistent with his initial statement that the theory should he 
a theory of any form of explanation. From a modelling perspec­
tive, the determination of what it means to explain and what 
constitutes a theoretical proposition have all the hallmarks of 
heuristic, evaluative processes. Although such processes could 
be modelled in a connectionist fashion, a traditional symbolic 
treatment seems more directly applicable. 

In conclusion, a psychological theory would require consider­
able additions not provided for in Thagard's theory. The nature 
of these changes also recommends a conventional symbolic 
model rather than a connectionist one. 

Assimilating evidence: The key to revision? 

Michelena T. H. Chi 
Leaming Research and Development Center, University of Pittsburgh, 
Pittsburgh, PA 15260 
Electronlc mall: micki%olrdca@vms.cis.pittsburgh.edu 

Thagard's theory of explanatory coherence has several exciting 
and profound applications in psychology. Two crucial but unre­
solved issues in psychology are: ( 1) How does conceptual change 
occur? and (2) What kind of'·transition mechanism" accounts for 
these changes? These two questions most typically arise in the 
domains of learning and development. In learning, one man­
ifestation of this issue concerns the transition from holding a 
naive theory of the physical world to holding a scientific or 
Newtonian view. In development, the issue concerns the transi­
tion from one stage (such as preoperational) to another, more 
advanced stage of thought (such as concrete operational). It is 
commonly thought that the shift from one kind of thought to 
another, either from preoperational to operational, or from pre­
Newtonian to Newtonian, depends on the adoption of a set of 
interrelated beliefs. (This wholesale adoption is sometimes 
called radical restructuring.) The dilemma has always been 
trying to identify the "mechanisms" that enabled this transition 
to take place. 

The most promising aspect of Thagard' s theory is that it could 
potentially uncover precisely what factors can contribute to 
restructuring (or to conceptual change) without postulating an 
explicit mechanism that is responsible for the transition. That is, 
by implementing ECHO in a connectionist framework with 
parallel constraint satisfaction, the model has the capability of 
settling into a state "naturally,'' thereby achieving restructuring 
without identifying specific mechanisms for it. Thus, in some 
sense, ECHO has bypassed the problem of identifying the "tran­
sition mechanism" that has puzzled psychologists for decades. 
The implication of ECHO is that manipulating a few coherence 
relations in a piecemeal way might in fact produce dramatic 
shifts in one's theoretical orientation or frame of thought. 
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Although ECHO has this potential, what has ECHO accomp­
lished so far? To understand what could have caused the transi­
tion (i.e., to understand what caused one theory to be more 
coherent than another), Thagard needs to model conceptual 
transitions directly. This is almost an impossible task in the 
historical context, somewhat less difficult in the developmental 
context, but perhaps feasible in a learning context. Thagard has 
attempted to model such a transition in the learning ca,;c by 
modeling the belief revisions that a student underwent in 
explaining the trajectories of projectiles while offering predic­
tions and receiving feedback. In the data cited in Ranney and 
Thagard (1988), the shift exhibited by subject S. P.L from a non­
Newtonian to a Newtonian framework occurred primarily from 
encoding new evidence that either confirmed existing New­
tonian hypotheses or contradicted existing non-Newtonian hy­
potheses. The advantage of this demonstration is that Ranney 
and Thagard could model the shift in conceptual change without 
postulating the formulation of new hypotheses, as was necessary 
in the historical cases (for example, Lavoisier had many new 
hypotheses that were not entertained by Stahl). This is fortunate 
because the mechanism by which new hypotheses are formu­
lated is as yet little understood, as Thagard knows. What 
appears to have caused a shift from pre-Newtonian to New­
tonian conceptions is modeled as the occurrence of new evi­
dence either provided by the experimenter, or entertained by 
the student, evidence that either confirmed or contradicted the 
student's existing hypotheses (the student initially had both 
Newtonian and non-Newtonian hypotheses). Thus, in general, 
Thagard' s applications of his theory to the learning domain, as 
well as to historical cases, point to two critical mechanisms 
needed for restructuring: the acquisition or formulation of new 
hypotheses and the encoding or entertaining of new evidence. 

Unfortunately for ECHo's plausibility as a model of human 
perlormance, the majority of psychological evidence regarding 
conceptual change contradicts an implicit assumption underly­
ing ECHO' s analyses of Ranney' s data. It is often found (in 
Piagetian research, for example) that confronting a child with 
evidence that contradicts the child's hypothesis usually does not 
lead to the child's rejection of that hypothesis. This suggests that 
the crux of the matter may not lie in the straightforward provi­
sion of new evidence, as modeled in Ranney and Thagard. 
Rather, the crucial insight for the subject is to realize that a 
particular hypothesis explains a particular piece of evidence. 
(This is the simplest case; I will avoid adding qualifications to all 
other cases, such as realizing that two hypotheses are contradic­
tory, and so on.) Hence, what underlies theory revision may be 
precisely the willingness to adopt or reject a belief that a 
particular piece of evidence is explainable by a specific hypoth­
esis. (This is currently built into ECIIO as a given.) This willing­
ness may in tum depend on the representation of a subject's 
current conception. 

There is another issue that is relevant to psychology: What 
does ECHo's network of explanations represent? By modeling 
ECHO in a connectionist framework, Thagard is implying that 
the connectivity per sc ought to inform the person whose mind 
the network embodies that a particular theory is more or less 
coherent than another. Presumably, if the network of La­
voisier's explanations is an accurate reflection of his memory, 
then it is not surprising that Lavoisier is convinced that his 
theory is the current one. This raises an interesting dilemma, 
however: Two contemporaneous theorists who hold opposing 
views would presumably know about each other's hypotheses as 
well as the evidence that each theory's hypotheses would ex­
plain. And yet, two contemporaneous theorists would not come 
to the same evaluation of their respective theories, as predicted 
from ECHO. This means that their representations must be 
different somehow. How they might differ can easily be seen in 
the arguments entered into by the theorists. Many of these 
arguments question the assumption that a particular hypothesis 



explains a particular piece of evidence. This goes back to the 
previous point that the critical "insight" is the willingness to 
assimilate into one's representation that a particular piece of 
evidence is explained by a particular hypothesis. As psychologi­
cal evidence shows, one is unwilling to encode a piece of 
evidence and its interpretation ifit conflicts with one's existing 
hypotheses. Thus, we have cycled back to the original question 
of how exactlv individuals revise their initial sets ofhcliefs in a 
significant w~y. 

One other issue relating to ECHo's feasibility as a human 
model concerns ECHO's exhibition of apparently superhuman 
capabilities. In the behavioral decision-making literature, it has 
consistently hecn found that simple linear combinations of 
evidence arc better at predicting outcomes such as success in 
graduate school (Dawes 1971) or the severity of Hodgkin's 
disease (Einhorn 1972) than human experts (e.g., physicians in 
the case of diagnosing Hodgkin's disease). The usual interpreta­
tion of these data is that humans excel at evaluating individual 
pieces of evidence with respect to a hypothesis hut are ex­
tremely poor at integrating multiple pieces of evidence. The 
same superhuman reasoning ability may be exhibited by ECHO 
in that it can resolve two discrepant views given all their 
explanatory links, whereas humans only evaluate each indi­
vidual explanation. The psychological community anxiously 
awaits further empirical tests to clarify these important issues. 

Two problems for the explanatory coherence 
theory of acceptability 

L. Jonathan Cohen 
The Queen's Coffege, Oxford University, Oxford OX1 4AW, England 

Thagard' s analysis of reasoning about acceptability is an interest­
ing new contribution to the field. However, it fails to meet at 
least two requirements that any such analysis should aim to 
satisfy. 

1. Consider a situation in which a known fact, E, needs to be 
explained and two rival hypotheses, H 1 and H2 , are proposed for 
the task Suppose that H I explains E and also another known 
fact, F. Suppose that H2 explains E and also predicts a hitherto 
unknown fact, P; and suppose too that this prediction is observa­
tio11ally or experimentally confirmed and that H2 also explains 
P. In that case, Thagard's system would allow H 1 and H2 to have 
equal acceptability. But in the history of science, most re­
searchers have been inclined to attach greater value, other 
things being equal, to a hypothesis that generates new knowl­
edge than to one that merely explains what we already know 
(Bacon 1859; Lakatos 1970; Leibniz 1865). Good scientific ideas 
have heuristic as well as explanatory power. They look to the 
future as well as to the past. This feature is reflected in any 
Bayesian analysis of reasoning about the evaluation of hypoth­
eses, because p(H/E) increases, other things being equal, as 
p(E) decreases. It is also reflected in the Baconian method of 
relevant variables (Cohen 1989, p. 152). However Thagard's 
analysis, however, makes no allowance for the merit of predic­
tive novelty, and, if widely adopted, would distort the evalua­
tion of scientific hypotheses in a way that might be seriously 
detrimental to the progress of human enquiry. Of course, 
Thagard could tack on an eighth principle that would attach 
appropriate value to predictive novelty alongside explanatory 
coherence, but this would be an ad hoc modification of his 
theory, whereas the merit of predictive novelty is an integral 
consequence of both Bayesian and Baconian analyses. By 
Thagard's own standard of simplicity, therefore, a Bayesian or 
Baconian analysis is preferable in this respect. 

2. Another feature of both Bayesian and Baconian accounts is 

Commentary/Thagard: Explanatory coherence 

that they offer a systematic, logical syntax for evaluating hypoth­
eses, because the former is tied to the mathematical calculus of 
chance and the latter to a generalised modal logic (Cohen 1989). 
It is thus possible in both systems to infer, for instance, the 
degree of acceptability of a conjunction of two independent 
hypotheses from the respective degrees of acceptability that 
each has on its own, orto infer that where H 2 isthedisjunction of 
H 1 with some other proposition, H2 's degree of acceptability 
must be at least as great as that of H 1. 

In Thagard's theory, however, as he himself points out, the 
acceptability of "p and Q" or of "P or Q" is not defined. So, in 
general, no such inferences are possible, and Thagard argues 
that this docs not matter. ECHO, he says, has no need to calculate 
the acceptability of "P and Q," because relations of explanatory 
coherence tell you all you need to know about P and Q indi­
vidually. Clearly this assumes that acceptability is of interest 
only in relation to single hypotheses. It is as if the ultimate 
purpose of research were to provide a list of individual hypoth­
eses with high acceptability values. Though such a program 
might conceivably satisfy those who have a certain kind of purely 
intellectual interest in science, however, it falls far short of what 
the practical interests of technology require. When you are 
building a plane, for example, you rely on many more than just 
one hypothesis, and the acceptability value of the conjunction of 
these hypotheses is very much at issue. 

Thagard also claims that his measure of acceptability is ap­
plicable to forensic reasoning about matters of fact. Yet on that 
topic there has been extensive discussion in recent years-in the 
literatures of jurisprudence, philosophy, and statistics-about 
how a conjunction's degree of acceptability relates to the de­
grees of acceptability of its several conjuncts (e.g., Allen 1986; 
Cohen 1977; Dawid 1987; Eggleston 1983; Kaye 1986; Schum 
1986; Williams 1979). There is a serious problem about whether 
a Bayesian measure can be applied in such cases, or whether a 
Baconian one is needed; the problem arises in regard to both the 
criminal standard of proof (proof beyond reasonable doubt) and 
the civil standard (proof on the preponderance of evidence). 
Thagard's theory of explanatory coherence, however, is not 
even a candidate for consideration as a measure of acceptability 
here, because it allows no application to the problem. 

An example will make the point clearer. Imagine a civil case 
against an insurance company in which the plaintiff has to prove 
two independent points-that he has a paid-up automobile 
insurance policy of a certain kind and that his accident was due 
to such and such circumstances. Suppose he proves each point 
with a probability of .6. Apparently he has proved his case as a 
whole with a mathematical probability of only .36, and yet the 
legal standard of proof may seem to require a probability of more 
than .5 for him to win. Well, perhaps there are ways for a 
Bayesian analysis to get around this difficulty, or perhaps the 
Bayesian analysis should be replaced by one in tenns of Baco­
nian probability. But at least we have to take seriously the 
problem of how to evaluate the acceptability of a conjunction in 
relation to the acceptability of its conjuncts. It will not do to 
imply, as Thagard implies, that the problem does not exist. 

I am not claiming that Thagard' s theory of acceptability has no 
valid areas of application. My point is only that it clearly fails to 
do justice to two kinds of context in which evaluations of 
acceptability are important in our culture-namely, the heuristic 
dimension of evaluation in science and the evaluation of con­
junctions in technology and the courts. There are, of course, 
trade-offs to be calculated in relation to any measure of accept­
ability. But it looks as though Thagard's system is inferior in 
important respects both to Bayesian and to Baconian measures. 
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Thagard's Principle 7 and Simpson's 
paradox 

Robyn M. Dawes 
Department of Social Sciences, Carnegie-Mellon University, Pittsburgh, PA 
15213 
Electronlc mall: rd1b@andrew.cmu.edu 

Although i share Thagard' s admiration for the work of Pen­
nington and Hastie (1987; 1988), l interpret it somewhat differ­
ently. Thagard argues that they show that a jury's verdict 
depends on the "explanatory coherence" of the prosecution's 
story compared to that of the defense. l believe they do more. 
Their "story model'' of Jury verdict is not just a descriptive one, 
in which they can argue post hoc that coherence has been 
achieved. Rather, it has the strong implication that the order in 
which evidence is presented will influence the verdict. 

Just as Thagard does not present a theory of explanation, 
Pennington and Hastie do not present a theory of what con­
stitutes a ''good story." They do note, however, that the order in 
which evidence is presented can affect the ''goodness" of a story, 
and in their work they show that the order of the evidence does 
indeed affect the verdict. In contrast, Bayesian analyses of jury 
verdicts (and other conclusions) are independent of the order in 
which evidence is obtained and presented. (The final posterior 
odds comparing two hypotheses consist of the ratio of the 
probability of the intersection of all the evidence and one 
hypothesis divided by the probability of the intersection of all 
the evidence and the other hypothesis; intersection is com­
mutative.) ln addition to being inconsistent with a Bayesian 
analysis, Hastie and Pennington's conclusion that order has an 
effect is compatible with our experience in forming judgments. 

Thagard does have an analogous "strong implication" in his 
model. Specifically, the coherence of a set of propositions is 
dependent on binary coherence (and in addition, the coherence 
of a single proposition depends in tum on the set in which it is 
embedded; section 2.1). That implication also conflicts with 
other analyses, such as all probabilistic ones. The reason is that 
such analyses allow the possibility of a Simpson's paradox rever­
sal in the relation between evidence and hypotheses, whereas 
pairwise analysis does not. 

This paradox is illustrated in Table l. Principle 7 is in section 
2.1 of Thagard' s target article. The entries are compound proba­
bilities, involving two equally likely hypotheses, H 1 and H 2, and 
two bits of evidence, e 1 and e 2 . H 1 is more probable given e 1 
than given its negation, and it is likewise more probable given e2 
than given its negation. The posterior odds comparing H 1 and 
H2 are respectively 3/2 and 4/1. But H 1 is less probable given 
the combination of c2 with e 1 than it is given c 2 alone. The odds 
arc 3/1, not 4/1. 

ls such a combination purely hypothetical? No. Let H 1 refer 
to Jill's hypothesized preference for Mortimer over Jack; let e 1 
refer to the evidence that she has accepted a date with Mortimer 
to a particular dance at the time Jack calls her to invite her to that 
dance; and lete 2 refer to the evidence that she turns down Jack's 
invitation. The structure of Table l indicates that it is perfectly 
rational to "discount" the impact of the rejection of Jack given 
knowledge of the otherwise damning (to Jack) information that 
she has accepted an invitation from Mortimer. Other examples 
of such reversals can be found in Tribe (1971) and Falk and Bar­
Hillel (1983) (e.g., a suspect's being seen in a bar slightly dnmk 
15 minutes prior to a crime committed 12 minutes away and 
quite drunk 15 minutes afterwards constitutes an "alibi," 
whereas either sighting alone can be interpreted as evidence of 
guilt). For a discussion of the role of such Simpson's paradox 
reversals in thought and science, see Messick and van de Geer 
(1981). 

Of course, it is very difficult to establish a general principle. 
Hastie and Pennington do not establish that in all cases at all 
times the order of the evidence makes a difference, but then 
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Table l. Simpson's paradox illustrated 

.3 .1 

.0 .1 

.1 .0 

H, 

.1 .3 

they do not have to, for a Bayesian analysis indicates that order 
shouldn't ever make a difference. They have an easier job than 
Thagard. 

l am concerned, however, that Thagard docs not stick to his 
basic binary hypothesis. For example, we read at the end of 
section 2 that P 1 and P2 may "together explain" Q, whereas "P 1 
and P3 together explain not-Q." I do not understand how we get 
to "together" from the premise that we only speak "deriva­
tively" of the explanatory coherence of a set "as determined by 
their pairwise coherence." To be reasonable, that is, to deal with 
reversals, the system must incorporate such possibilities. The 
problem, however, is to determine what the system means 
when it is extended in this way (this problem seems analogous to 
determining what "a connectionist" interpretation of the Neck­
er Cube means other than that its interpretation in three 
dimensions is not self-contradictory); sec section 3 ofThagard's 
target article. Unless Thagard's analysis and its realization in 
ECHO strictly follow the binary hypothesis, they become~to me 
anyway~indistinguishable from a verbal description of what the 
people meant to he modeled could have thought, had they been 
reasonable people. (They were.) 

Perhaps the problem about the relation between the com­
pleteness of Thagard's analysis and its own internal coherence 
arises because he is trying to do too much: He wants to reduce 
both scientific and lay thinking to an associative basis, as if there 
were only one way of thinking logically about a problem. This 
approach follows that of Cohen (1981), who argues that because 
people have no way of thinking rationally that transcends their 
own thinking processes, these processes must he regarded on an 
epister,wlogical basis as defining rationality. The problem with 
that conclusion is that when people think about a problem that 
involves logical coherence, they can think about it in many 
ways, and in fact they see the logical characterization problem as 
existing apart from their own thought processes. As in percep­
tion (Neisser 1976), their orientation is to discover what is "out 
there"; and although admitting the analytic rather than em­
pirical nature of reasoning to determine it, they nevertheless 



use reasoning as part of the process of '·discovery." They be­
come-to use the phrase of Davis and Hersh (1981) in describing 
how mathematicians actually think about their problems- "clos­
et Platonists," even though they cannot justify Platonism. Con­
sider, for example, the Paul Halmos tournament problem. The 
person in charge of reserving a squash court for a 53-person 
tournament may compulsively figure out multiple systems of 
byes to detennine how often it must be reserved, only to 
"discover" suddenly that the answer is 52-because 52 entrants 
must be eliminated and one is eliminated as the result of each 
match. 

Thus, arguments are rejected or accepted in a much less 
coherent manner than Thagard's analysis suggests; some occa­
sionally even lead to bad conclusions. Perhaps the attempt to 
provide a single principle that will lead both to a conclusion 
based on certain evidence and to its subsequent rejection is just 
too ambitious. After all, some higher courts overturn the deci­
sions oflower ones because their reasoning was improper (e.g., 
the famous Collins case 19681), and some scientific arguments 
overturn others. Such reversals of conclusions are not just a 
matter of discovering a new evidence node, with everyone's 
associations between the existing ones changed only through 
the relationship of the new node to them. If it were, new 
experiments or discoveries would be "crucial" in the sense that 
Thagard implies they aren't. 

I'm not saying that Thagard' s goal is impossible to obtain, I 
just have my doubts. If Thagard can deal with Simpson's para­
dox, that doubt will be lessened but not eliminated. 

NOTE 
1. The lowercourtallowed 1 minus the "exclusion probability" (that a 

randomly constructed couple would have the characteristics of the 
accused couple) to be interpreted as the probability that the accused 
couple was guilty. The higher court ruled that the appropriate proba­
bility was that the accused couple was the guilty one given that the 
couple committing the crime had the specified characteristics. (68 Cal. 
2nd 438 P 2nd 33 66 California Reporter, 1968.) 

Is Thagard's theory of explanatory 
coherence the new logical positivism? 

Eric Dietrich 
Department of Philosophy, Program in Philosophy and Computer & 
Systems Sciences, State University of New York, Binghamton, NY t390 t 
Electronic mall: diatrich@blngvaxu.cc.binghamton.edu 

I view Thagard' s theory of explanatory coherence as philosophy 
of science, and, if I ignore the program ECHO, I find his ideas 
refreshing and important, in part because his theory is outside 
the formalist legacy left to us by logical positivism. Thagard, it 
seems to me, has helped make respectable the idea that scien­
tific explanation is a multifaceted enterprise and that the tools 
fonnalists dearly love-logic and probability-constitute merely 
one of the facets, and a small one at that. Of course, Thagard is 
not the only one trying to make this idea respectable; we may at 
long last be ridding ourselves of the shackles oflogic and logical 
positivism. I will return to this in the conclusion. 

I do have some reservations about Thagard's theory, how­
ever. Simply put, I'm not sure what his theory of explanatory 
coherence is a theory of. Viewing his theory as philosophy of 
science required a conscious choice on my part, because there is 
at least one other way of viewing his theory: as psychology. Both 
views seem to me to have problems. I will begin with the 
philosophy-of-science view. 

1. Explanatory coherence as philosophy of science. Thagard 
begins and ends his target article with discussions of explanation 
and methods for distinguishing good hypotheses from bad ones. 
Here he is clearly attempting to locate his theory in the space of 
competing theories in the philosophy of science. But, if his 
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theory of explanatory coherence is philosophy, then what is the 
program ECHO for? The claim that scientists accept or reject 
hypotheses based on how their various parts cohere and how the 
hypotheses cohere with one another can be made without using 
a computer program. Harman has done it (1973), as have Kuhn 
(1977) and Kitcher (1981). In fact, scientists themselves find this 
claim quite plausible, especially those like astronomers and 
paleontologists who cannot run experimental tests of their 
theories. Moreover, the program actually interferes with 
Thagard's argument. For example, ECHO invites such questions 
as, Why does Thagard select the activation levels and excitatory 
and inhibitory weights he does? and, Why is the number of 
cycles ECHO takes to settle important? The answer to the first of 
these questions is that it makes ECHO settle more quickly (see 
sect. 4.2 and 12.2), and, as near as I can tell, the answer to the 
second is that if ECHO settles quickly, we spend less money on 
compute-time. From a philosophy-of-science perspective, 
these answers are irrelevant. 

I have another problem with ECHO, namely, that it must have 
facts, hypotheses, and evidence distinguished for it ahead of 
time. But what are the criteria for distinguishing among these? l 
tried an example myself, not using ECHO, hut using PLECHUPP 
(Playing with ECHO Using Pencil and Paper) on Poincare's 
explanation (1952, pp. 46-63) of the Eureka Phenomenon (hav­
ing a sudden insight into a problem) and on the competing 
explanation that insight comes from following rules. I found that 
distinguishing among hypotheses, evidence, and facts in this 
case was rather arbitrary. And because I wanted Poincare's 
model to win, I wasn't sure that the way I distinguished between 
hypotheses and evidence didn't beg the question against the 
competing, rule-based explanation. Thagard is aware of this 
problem, I think (see Thagard' s discussion of Lavoisier's and 
Darwin's arguments, and section 7), but being aware of a 
problem is not solving it. Moreover, it is more in the spirit of 
Thagard' s theory, viewed as philosophy of science, that proposi­
tions should change their status as hypotheses or evidence based 
on pressures for the propositions to cohere in certain ways. 

One last problem with Thagard' s theory construed as philoso­
phy of science is his taking the notion of explanation as a 
primitive. This move makes his whole project seem question­
begging. Philosophers of science want to know what explanation 
is. Because Thagard's goal (in my view) is to develop a theory of 
scientific explanatory coherence, it is perhaps all right to assume 
some notion of explanation as a primitive for the short term, hut 
then he is not free to criticize other philosophers of science who 
are attempting to explain explanation on the grounds that their 
accounts do not do what his does. Thus, Thagard's criticism of 
Salmon (1966) and Glymour (1980) seems irrelevant and unfair 
because they are trying to do what he is not: explain scientific 
explanation. 

2. Explanatory coherence as psychology. The existence of 
ECHO makes more sense (but not much more) if Thagard' s 
theory is viewed as a psychological one about how humans come 
to believe a certain hypothesis. Thagard is quite right when he 
says that his seven principles "are too general to have direct 
experimental consequences." IfThagard's theory is psychologi­
cal, then to test it he will need detailed predictions regarding 
what ECHO networks look like when they settle, how long 
(relatively) it takes them to settle, and what the weights and 
activation levels are. And it would be interesting ifEcno's shifts 
in beliefs correspond to those of human subjects. (Of course, it is 
not the program ECHO that is relevant to this project, but the 
equations implemented in the program.) It seems extraor­
dinarily unlikely, however, that the few equations Thagard has 
for testing his psychological theory actually capture the dynam­
ics of human belief change and fixation. I for one believe that one 
day we will have such equations; perhaps Thagard' s theory will 
make that day arrive sooner rather than later. 

3. Conclusion. According to Steve Downes, a colleague of 
mine (personal communication), Thagard' s confusion over 

BEHAVIORAL AND BRAIN SCIENCES (1989) 123 473 



Commentary/Thagard: Explanatory coherence 

whether he is doing philosophy of science or cognitive psychol­
ogy has a dark interpretation. He might think that understand­
ing how science works is equivalent to understanding how 
human individuals work. One hopes that Thagard does not think 
this, because such a project leaves out the social aspects of 
scientific explanation and is therefore doomed. 

I have a dark interpretation of my own for Thagard' s confo­
sion. Clearly, the star ofThagard's target article is the program 
ECHO. Thagard is also clearly proposing a theory in the philoso­
phy of science. If we recall that one of the hallmarks of logical 
positivism was its reliance on technical, formal devices derived 
from logic for solving problems in the philosophy of science, we 
can perhaps see a new positivism, a .. computational positivism," 
moving in to take up where logical positivism left off. Computer 
programs and a reliance on logic have already virtually ruined 
artificial intelligence and cognitive science (Dietrich, in press a; 
in press b). Philosophy may be the next to go-again. 

On the testability of ECHO 

D. C. Earle 
Depal1ment of Psychology, Washington Singer Laboratories, University of 
Exeter, Exeter EX4 4QG, England 
Electronic mall: earle.dc@exeter.ac.uk 

Thagard' s theory of explanatory coherence and its connectionist 
implementation in ECHO is a significant achievement with some 
interesting possibilities for future development. As the imple­
mentation of a theory of hypothesis evaluation in a philosophy of 
science, ECHO has the particularly pleasing property of being 
able to disregard contradictory evidence under certain circum­
stances. This capability is necessary for any sophisticated philos­
ophy of science if it is to accord with the history of science, but 
frequently the provision of such a capability has a disturbingly 
ad hoc nature: In ECHO the ability to disregard evidence is an 
intrinsic property of the program. 

Thagard rejects a rigid dichotomy between normative and 
descriptive matters and proposes that the theory of explanatory 
coherence can be applied to hypothesis evaluation in the philos­
ophy of science, in legal reasoning, and in psychology. As such, 
ECHO is presented as a model of the behaviour of scientists, the 
behaviour of jurors, and the behaviour of subjects in experi­
ments in psychology. It is intended that ECHO should be test­
able, as must be required of any scientific theory. In this 
respect, a major concern is whether the initial conditions for the 
application of ECHO to a particular situation are sufficiently 
constrained to provide the testability and to enable the unequiv­
ocal interpretation of results required of a scientific theory. 

Consider the application of ECHO to a case of hypothesis 
evaluation in science. Suppose that ECHO prefers one hypoth­
esis over another; and suppose that the scientific community is 
divided, with different groups of scientists supporting one or the 
other hypothesis. Are we to conclude that one group of scientists 
is behaving rationally and the other irrationally-for example, 
using arguments that are extraneous to explanatory coherence, 
such as a prior and otherwise unsupported belief that incoheres 
with the hypothesis preferred by Ecno? Such a possibility is 
suggested in a case of legal reasoning in the discussion of the 
Peyer case, and a similar argument might he presented to 
account for the creationists' refusal to accept Darwinian theory. 
However, an alternative interpretation is that in this hypo­
thetical example, the specific application of ECHO models the 
reasoning of one group of scientists but not that of the other-that 
the failure lies not with the lack of rationality of one group of 
scientists but with ECHO. It may be argued that hypotheses are 
evaluated in relation to the wider set of beliefs of the individual, 
and that some of these beliefs may he relatively immune to 
disconfirmations or may be supported by different sets of evi-
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dence. If the initial conditions for the application of ECHO were 
altered to include these other beliefs, then it is possible that a 
different end state would be reached. 

There are a number ofrelated difficulties here. One concerns 
the question of what is to be counted as rational and what is to he 
counted as irrational; another concerns the decision as to what is 
to be included in the initial conditions and what omitted; and a 
third concerns the weights and activation levels to be given 
initially to particular items. It is shown that different end states 
may be reached, de1)ending on the initial settings of the param­
eters and on the priority given to a certain piece of data. If one 
group of scientists values a piece of evidence more than another 
group, then this may well account for the difference in the 
decisions of the groups. Part of the problem is the large number 
of free parameters in ECHO, which necessarily make it flexible in 
its predictions. 

Thagard suggests that the input to ECHO could be automated, 
but in view of the argument presented here, this suggestion is 
unconvincing, except perhaps for certain well-defined cases. If, 
however, it is accepted that a failure by ECHO to match the 
behaviour of an individual, or a group of individuals, in a certain 
application cannot be interpreted reliably as a failure of ra­
tionality on the part of the individuals rather than a failure by 
ECHO to model the reasoning of the individuals, then on the 
basis of a similar argument, the success of ECHO to predict 
hypothesis evaluation is just as equivocal. Human behaviour 
and ECHo's predictions may be consistent, but for different 
reasons. Subjects in reasoning tasks arc notoriously bad at 
describing their reasoning processes (Nisbett & Wilson 1977); 
the initial conditions for an application of ECHO are not easily 
established from subjects' protocols or from other descriptions 
of the reasoning process. Without an independently verifiable 
way of establishing the initial conditions, including the values 
for the large number of free parameters, the testability of ECJIO 
as a model of hypothesis evaluation must remain limited. In this 
matter, ECHO is no different from other work in artificial intel­
ligence where algorithms may successfully match human perfor­
mance but where it is difficult to establish that the underlying 
processes are the same. 

A major challenge for the future development of ECHO will he 
to find ways of independently establishing the intial conditions 
for particular applications of ECHO. Enough has been accom­
plished already to make this endeavour worthwhile, and section 
9 suggests that progress is already being made. 

What's in a link? 

Jerome A. Feldman 
International Computer Science Institute, 1947 Center St., Berkeley, CA 
94704-1105 
Etectronlc mall: jfeldman@icsi.berkeley.edu 

One of the hopes for connectionist modeling techniques has 
been that they will provide a useful scientific language for efforts 
in various behavioral and brain sciences. Thagard's target article 
is a beautiful example of how this is beginning to work out in 
practice. The details of Thagard' s theory doubtless need refine­
ment, but the case for expressing competing approaches as 
networks of positive and negative influences seems convincing. 
The formulation is no mere recasting of logical or probabilistic 
arguments-here the interactions of the elements determine the 
outcome. This is potentially of great importance, and my one 
disappointment with the article is that more attention was not 
paid to foundational questions. 

One of the principal attractions of hoth logic and probability 
theory is that each has a relatively clean and well-understood 
formal semantics. Even if networks of weights and activity levels 
are hetter for describing many phenomena, they will not be fully 



acceptable without some interpretation of the formalism. This is 
much more pressing in a philosophically hascd application such 
as this one than in a neurophysiological model, for example. The 
fact that the same basic rules for nehvork generation apply 
across examples encourages one to believe that there might he 
principled relations in explanatory cohereoce. The seven princi­
ples and their mapping onto oetworks provide an ioformal 
semantics, hut no fmmdation. No one should expect a complete 
solution iu such a preliminary exploration, but it was surprising 
to find no acknowledgment that there was an issue. If the links 
don't represent probabilities (and they don't), what do they 
represent? There is a practical side to this prohlem. If we 
wanted to apply ECHO to an unsolved decision problem, how 
would we know what choices of weights were admissible? 

Coherence: Beyond constraint satisfaction 

Gareth Gabrys and Alan Lesgold 
Learning Research and Development Center, University of Pittsburgh, 
Pittsburgh, PA 15260 

We offer two observations about Thagard' s very·important work 
in this commentary. First, we note that the theory represents a 
specialization of constraint satisfaction systems, making the 
specifics of the specialization of particular importance. Second, 
we muse ahout what it means to do dialectical thinking, to use 
one's built-in coherence processor as a tool. 

Constraint satisfaction. Thagard's principles provide a map­
ping between a set of explanations and a conncctionist computa­
tional structure within which coherences can be calculated. In 
essence, Thagard asserts that explanatory coherence is a con­
straint satisfaction problem. For sets of explanations, observa­
tions, and assertions that can be structured according to his 
seven principles, a conncctionist constraint satisfaction al­
gorithm can find a good fit to the constraints formed hy these 
explanations, observations, and assertions and can assess the 
contribution each one makes to that fit. Pointing out that this can 
be done is important. However, once the basic approach has 
been proposed, further discussion must focus on the question of 
which details of the approach matter. Principles 2(a), 2(b), and 5 
equate explanations with constraints. Principles I, 6(a), and 7 
arc general properties of parallel distributed constraint satisfac­
tion models, described in explanatory coherence terms. Princi­
ples 2(c), 3, 4, and 6(h) offer unique flavoring to the general 
proposal. Specifically, 2(c) reduces the weight of explanations 
requiring cohypothescs, 3 describes how analogy can set up 
explanatory links, 4 sets up a bia<; for data propositions, and 6(h) 
increases the decay of hypotheses when there is unexplained 
evidence. These four principles respectively account for the 
influence of simplicity, analogy, evidence, and comprehen­
siveness on explanatory coherence. We expect that future de­
bate will focus on them. 

Given a formalized set of explanations, Thagard's principles 
can organize them into a constraint structure. But how are 
hypotheses and explanations formalized? Thagard recognizes 
this problem and suggests several principles that reduce the 
arbitrariness of the formalization process. However, the extent 
of reduction necessarily results in a loss of information. Presum­
ably, humans have additional reasoning mechanisms layered on 
top of the basic capability Thagard presents. Thagard recognizes 
that not all arguments can be represented in ECHO, and points 
out that he is dealing only with causal explanations. It will be 
intriguing to see what other aspects of reasoning and argumenta­
tion can be built on top of ECHO. 

Toward dlalectlcal process models.In his examples of jury 
reasoning, Thagard demonstrates how his approach can provide 
a useful framework for understanding and measuring explanato­
ry coherence. However, jury reasoning is a fact-finding process 
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that is very different from the jurisprudential reasoning used in 
deciding cases at law. Indeed, juries are instructed to consider 
the facts only, and to take instruction in the law from the judge. 
When cases are argued at law, different principles apply, such as 
stare decisis, the principle that prior decisions should not, in 
general, be overturned. Ashley (1988) has suggested that case­
based reasoning is a more dialectical process than principle­
driven reasoning because it involves a search for the particular 
features that differentiate precedent cases that were decided for 
the plaintiff from those decided for the defendant. He suggests 
that one needs to pay attention to the particular factors that 
distinguish cases decided each way, introducing cut scores on 
these factors. 

For example, consider the importance in a trade secrets case 
of the number of people to whom the secret has been divulged. 
Ashley suggests that instead of weighting this value in a con­
straint satisfaction system, legal reasoning is better modeled hy 
setting cut points on the dimension. For example, a case is 
weakened if more than a few people have been told the secret. 
However, on rare occasions a successful case has been made 
even when thousands were told the secret. The chore then 
becomes local rather than glohal~to analyze the links to particu­
lar features in order to determine what distinguishes this other­
wise aberrant case. One could build constraint satisfaction 
systems to do that, too, but they would be driven hy precedent 
rather than by causal reasoning. By forcing (clamping) large 
weights on links from nodes representing cases to nodes repre­
senting the two possibilities of the plaintiffs or the defendant's 
having prevailed in the decisions for those cases, a model would 
focus· on a subset of the weightings known to be generally 
relevant. The task would be one of discovering, rather than 
building from, an explanation. 

One way this might he done is hy alternately operating in 
global stare decisis mode as just described, or in a more local 
mode in which subsets of the known relationships concerning a 
set of cases are separately examined. More generally, we hope 
that it will be possible to build on the level of reasoning 
described hy Thagard' s theory to model more reflective think­
ing. Perhaps such reflection involves the temporary construc­
tion of candidate systems of assertions, observations, and expla­
nations that are then subject to the "built-in" coherence 
analyzing mechanism. Such candidate subsystems might be 
handled hy the kind of attentional gating mechanisms recently 
introduced by Schneider and Detweiler (1987). 

We are intrigued hy the possibility of systems that combine 
both forms ofreasoning explicitly, that is, by dialectical systems 
that use several different weighting schemes and then analyze 
how they differ. It seems worthwhile to try to model a higher 
plane of dialectical reasoning that is served hy, but goes beyood, 
constraint satisfaction. Thagard has shown us how humans may 
quickly evaluate cxplanations~we still need more work on how 
explanations are generated in the first place. 
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What does explanatory coherence explain? 

Ronald N. Giere 
Center tor Philosophy of Science, University of Minnesota, Minneapolis, 
MN 55455 

Thagard begins his target article hy asking, "Why did the 
oxygen theory of combustion supersede the phlogiston theory?" 
Answering such questions has been a major goal of the philoso­
phy of science for as long as it has existed as a recognizable 
discipline. Rejecting answers deriving from the philosophy of 
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logical empiricism, Thagard would replace or supplement the 
resources of logic with those of the cognitive sciences, particu­
larly artificial intelligence. This approach is gaining adherents 
within the philosophy of science community (Darden 1983; 
Giere 1988; Glymour et al. 1987; Nerscssian 1984). In spite of 
my sympathies with the general approach, it seems to me that 
Thagard is still a long way from answering the questions he 
poses. 

Thagard claims that as a matter of psychological fact, indi­
vidual scientists reason and evaluate theories according to some­
thing like his model of explanatory coherence. Ectto, he says, 
"can handle very complex examples of actual scientific reason­
ing." The revolutions in question took place, therefore, because 
the scientists involved individually reasoned to similar conclu­
sions. This claim is not adequately supported by the evidence 
Thagard presents. 

The explanatory relatiouships modeled by ECHO arc obtained 
by an intuitive analysis of texts written by major architects of 
scientific revolutions, such as Lavoisier and Darwin. lu both of 
these cases, the texts in question were written long after the 
principals had themselves become convinced of the correctness 
of their views. Moreover, in eaeh case the scientist's purpose in 
producing his text was not to record the thought processes by 
which he became convinced of the correctness of his theory, but 
to establish his claim on the theory and to persuade others of its 
value. These purposes arc so different that there is considerable 
reason to doubt that a text produced in the latter context would 
provide much insight into the former processes. 

In his target article, Thagard refers to "the input given to 
ECHO to represent Lavoisier's argument in his 1783 polemic 
against phlogiston." Later he repeatedly refers to "Darwin's 
argument." These phrases suggest that what Thagard is really 
modeling is not scientists' reasoning but the structure of their 
arguments, presented in what might be called "the context of 
persuasion." The most the model of explanatory cohcrcuee 
explains, then, is why a scientist's presentation favors his view 
over those of his rivals. It presents his hypotheses as more 
explanatorily coherent with the data aud each other than those 
of the opponents. 

Thagard recognizes the objection that he might only be 
"modeling the rhetoric of the scientists, not their cognitive 
processes." However, his reply that "there is some eorrelation 
between what we write and what we think" fails to meet the 
objection. Of course there is" some correlation." The question is 
whether there is enough. Thagard provides little independent 
reason to suppose that there is sufficient correlation to use what 
one writes as an indicator not only of what, but how, one thinks. 
Why should written arguments constructed after the fact to 
persuade others be a good indieator of one's original cognitive 
processes? 

Now suppose we grant, for example, that Lavoisier's presen­
tation exhibits his theory as possessing greater explanatory 
coherence than phlogiston theories. We still have no explana­
tion of why there was a revolution, which is to say, why others 
adopted Lavoisier's presentation as their own. Because Thagard 
treats "explains" as a primitive, he mu.'itagrce with competitors' 
claims about what explains what. Moreover, as Thagard allows, 
different scientists may assign greater weight tu some explauato­
ry relationships than to others. Thus, applying Thagard's owu 
model to the writings of Lavoisier's opponents would probably 
rc.'iult in their presentations of the phlogiston theory exhibiting 
greater explanatory coherence than Lavoisier's theory. Even if 
some of these opponents later adopted Lavoisier's argumeuts, 
we arc left without auy cxplanatiou of u.:liy they changed their 
minds. 

The traditional philosophical objcctiou to coherence theories 
is that there is not enough of a connection between internal 
coherence and representational fidelity to the external world. It 
requires only theoretical ingenuity to coustrnct a highly co­
herent explanatory uetwork. Why should that provide much 
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basis for thinking that the network so constructed represents an 
external world beyond the given facts? 

In response, Thagard might adopt a more normative stance. 
His model of explanatory coherence, he might claim, captures 
the normatively correct relationships among statements that 
determine rational acceptability. Moreover, there is a single, 
"correct" presentation of the data and rival hypotheses that 
reveals Lavoisier's theory to have greater explanatory co­
herence. The revolution took place because the scientists in­
volved were rational agents who followed the norms of explana­
tory eoherencc. That this might ultimately beThagard's position 
is suggested by his remarks in section I0.5 on "the descriptive 
and the normative," and by the more extended discussion in his 
book (1988, Chapter 7). In neither place docs he provide auy 
reason to believe that such norms arc actually operative. 

On the latter interpretation, Thagard's model functions like 
an inductive logic, though it is richer than the probabilistic 
logics developed by the logical empiricists. The strong similarity 
between these two approaches is largely due to the fact that both 
attempt to analyze scientific reasoning iu terms of more or less 
formal relationships among statements, particularly statements 
representing "hypothcsc.<;" and "evidence." Although this as­
sumption is common in the artificial intelligcuce community, it 
is less widely accepted in other areas of the coguitivc sciences 
such as cognitive psychology (Twcney 1985) or the ncuro­
sciences (Churchland 1986). 

My own view (Giere 1988) is that a genuinely "cognitive" 
approach to explaiuing science must get beneath the linguistic 
surface to the nonlinguistic representational mechanisms and 
judgmental strategics operative in individual ('()gnitive agents. 
These mechanisms and strategies have representational signifi­
cance because they incorporate active causal interaction with 
the world, especially through experimentation. Scientific revo­
lutions emerge as the collective result of individual judgments 
by members of the relevant scientific community. There is no 
need for any normative principles of rationality. Indeed, one can 
allow a cousidcrable role for "noncognitivc" factors as well. The 
result is a more faithful account of science as it really is. 

Are explanatory coherence and a 
connectlonlst model necessary? 

Jerry R. Hobbs 
SRI International, Menlo Park, CA 
Electronic mall: hobbs(Wai.sri.com 

The general pattern for explanation is 

H explains E, 

where H and E arc sets, or conjunctions, of propositions. The 
widely acknowledged criteria for detcrmiuing the "goodness" of 
an explanation are that H should be as small as possible and E 
should be as big as possible. We want more baug for the buck, 
where E is the bang and H is the buck. These arc the criteria of 
simplicity and consiliencc that Thagard has writtcu about per­
ceptively in previous papers and in parts of this one; his discus­
sious of these criteria have been important in general aud a 
siguificant iuflucucc on my owu thinking. 

The most simple-minded procedure for measuring the good­
ness of an cxplauation would be to count the propositious in E, 
count the propositions in H, and subtract. Pick the theory that 
has the highest such number aud contains uo contradictions. 
(Let's call this the Naive :Method, and refer to the number as #E 
- # ll.) There are at least two problems with this procedure­
what is meant by "explains," and what arc the iudividuatiug 
criteria for the propositions in H aud E. They are problems for 
Thagard's method as well. He legitimately skirts the first of the 



problems, and in section 7 he probably says all that can reason­
ably be said about the second in a short article. 

In any case, the Naive Method needs to be replaced by 
something more sophisticated. Thagard proposes a more com­
plex method for evaluating theories by defining a relation of 
explanatory coherence between propositions and then using 
those relations as the links in a connectionist model ECHO that 
computes the explanatory coherence of an eutirc cxplauation. It 
turns out, however, that for every single one of Thagard's 
examples, the Naive Method yields exactly the same result that 
ECHO yields. This gives rise to the disquieting suspicion that all 
of this couuectionist architecture and the theory of explanatory 
coherence it rests upon amount to nothing more than a very 
complex and possibly inaccurate procedure for doing subtrac­
tion. 

There are two issues that need to be examined more closely 
from the perspective of the Naive Method. The first is whether 
we should always prefer deeper theories even where we do not 
thereby expand the evidence explained. This is illustrated by 
the example in section 4.3. Here, for Thagard, {H3} is the best 
theory because in addition to explaining El aud E2, it explains 
Hl. Thagard' s intuition is that this gives it a greater explanatory 
coherence. I'm not sure about that. If Hl is of no independent 
interest, should the fact that it is also explained make {H3} a 
better theory? In the Naive Method, if we follow Thagard, {H3} 
explains {Hl,El,E2} and #E - #H ~ 3 - I~ 2. Ifwe don't, 
{H3} explains only {El,E2} and #E - #II~ 2 - I ~ I, the same 
score earned by the theories {Hl} and {H2}. It is in the former 
case, when we follow Thagard' s intuition, that the Naive Meth­
od matches ECHo's results. (In neither case do we include 
explained hypotheses in H.) 

This consideration turns out to be significant in the Peyer case 
described in section 6. 2. If we follow Thagard in valuing ex­
plained hypotheses and thus including them in E, theu in the 
case for Pcyer's guilt, #E - #H = 9, whereas in the case for his 
innocence, #E - #H = 7. This corresponds to the judgment of 
guilt that ECHO reached. On the other hand, if we don't include 
~xplained hypotheses in E, then #E - #H = 6 for botb guilt and 
innocence. This, recall, is the case that resulted in a hung jury. 

The second issue is the use of analogy in evaluating theories. 
Thagard views this as a separate and legitimate criterion, but it 
seems to me that it can be subsumed under simplicity and 
consilience. The existence of an analogy docs not by itself 
enhance a theory's explanatory power. It does so only when that 
analogy can be seen to rest upon a deeper, underlying, perhaps 
very abstract principle from which the two analogous explanato­
ry relations can be derived. It is not enough for "Hl explains 
El" and "H2 explaius E2" to be analogous. They must be so 
because they both instantiate some common abstract principle 
P. A particularly dear instance of this is Thagard' s one concrete 
example of an analogy, in the Darwin case discussed in section 
5.2. The two specific explanatory relations-that "human­
directcd selection can result in new breeds" and that "natural 
selection can result in new spccies"-arc both instantiations of 
the more general principle that "seledion can result in new 
varieties of living beings." This is true even if the general 
principle was not recognized until the aualogy was constructed. 

When a single mathematical theory is applied to seemingly 
different phenomena, the mathematical theory is the deeper, 
underlying, abstract principle that the analogy between the 
phenomena rests on. 

It is hard to find examples in science of analogous explanations 
that do not rest on a common abstract principle-a fact that by 
itself supports my claim. But an analogy that, for me at least, 
does not have such an underpinning is the analogical picture of 
Thompson's model of the structure of the atom: Electrons arc 
embedded in the nucleus of an atom a<; raisins arc embedded in a 
pudding. This analogy may help us visualize Thompson's model, 
an<l the model itself provided an explanation of ionization, but 
the analogy does not, in my mind, draw on any underlying 
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structural principle and is not iu the least compelling as an 
argument for the model. 

If an analogy ltetwcen two explanatory relations, .. Hl explains 
El" and "H2 explains E2,'' to be convincing, must rest on a 
deeper underlying principle P, then explauation by analogy can 
be subsumed under the criteria of simplicity and consiliencc. 
The explanation is simpler an<l more consilieut because a single 
general principle explains two, more specific principles, while 
the original hypotheses continue to support the origiual evi­
dence. This observation trauslatcs directly into the operation of 
the Naive Method. Rather than explaining {El} with {Hl}, we 
explain {E!,E2,(EXPLAIN HI EI), (EXPLAIN H2 E2)} with 
{Hl, H2, P}, so that #E - #II is increased by one. When 
analogy is treated in this way, in the examples of sections 4. 7 and 
5.2, the Naive Method yields the same results as ECHO. 

I am sympathetic with the notion that the best theory is the 
most coherent one; and I am at least agnostic regarding connec­
tionist models. But Thagard's target article does not, unfortu­
nately, constitute au argumeut for either, because from the 
examples presented, we caunot be convinced that ECHO is more 
than an excessively complicated way of implementing an evalua­
tion metric that involves neither and is surely far too simple. 

Inference to the best explanation is basic 

John R. Josephson 
Laboratory for Artificial Intelligence Research and Department of Computer 
and lnfonnation Science, Ohio State University, Columbus, OH 43210 
Electronic mall: jj@cis.ohio-state.edu 

I am in full agreement with Thagard and others that there exists 
a powerful and ubiquitous form of inference that is built on 
explanatory relationships. Yet I l1clicve that the explanatory­
coherence account proposed by Harman, and given computa­
tional flesh by Thagard, is seriously but subtly flawed. 

Harman (1965) argued that "iufercnce to the best explana­
tion" (IBE) is the basic form of nondeductive iufereuce, subsum­
ing "enumerative induction" and all other forms of nondeduc­
tive inference. He argued quite convincingly that IBE is a 
common and important pattern of inference and that it sub­
sumes sample-to-population inferences, that is, inductive gen­
eralizations, as a special case. (This is my way of putting the 
matter.) The weakness of his overall argument was that other 
forms of nondeductive inference are not seemingly subsumed 
by IBE, most notably population-to-sample inferences, that is, 
predictions. The main problem is that the con cl us ion of a 
prediction does not seem to explain anything. (Sec Josephson, 
1982, pp. 107-30 for more details.) 

This last point, and others, were taken up by Ennis (1968). In 
Harman's reply to Ennis, instead of treating predictions as 
deductive or admitting them as a distinctive form of inference 
not reducible to IBE, Harman took the curious path of trying to 
absorb predictions, along with a quite reasonable idea of IBE, 
into the larger, vaguer, and less reasonable uotion of"maximiz­
ing explanatory coherence" (Harman 1968). In this I thiuk 
Harman made a big mistake, and Thagard has followed him in 
making it. 

I think that there is a clear and basic form of inference that 
goes more or less as follows: 

D is a collection of data (facts, ohservations, givens), 
H explains D (would, if true, explain D), 
No other hypothesis is able to explain D as well as H does. 
Therefore, H is probably true. 

The confidence in the conclusion should (and typically docs) 
depend on the following considerations; 

(1) how decisively H surpasses the alternatives; 
(2) how good H is hy itself, independent of the alternatives 
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(e.g., we will be cautious about accepting a hypothesis, ev~n if.it 
is clearly the best one we have, if it is not sufficiently plausible m 
itseIO, 

(3) how thorough the search was for alternative explanations; 
and 

(4) what are the pragmatic consequences, including the costs 
of being wrong and the benefits of being right; 

(5) how strong the need is to come to a conclusion at all, 
especially considering the possibility of seeking further evi­
dence before deciding. 

This inferential pattern is the basic one, I contend, with an 
epistemic force and information-processing significance all its 
own Gosephson et al. 1987). The main goal of such an inference, 
to arrive at a confident explanation of something, is a reasonable 
one to pursue if we aim at understanding. But the reasous for 
wanting to maximize overall explanatory coherence are obscure. 
Moreover, IBE, as I have just described it, relies inti?1ately on 
processing considerations not reflected in Thagard s model, 
such as the formation of hypotheses and the search for alter­
native explanations. 

One sign of the weakness of Thagard's model is the sym­
metrical links, which make the model unable to accommodate 
logical implication or the asymmetry of cause and effect. A 
further sign of trouble is the "'symmetry of explanation and 
prediction" built into the model by way of the symmetry in 
Principle 2(a) (note too the discussion in section 4.3 and the 
remark in section 4.4). At first appearance it may seem that a 
theory capable of explaining something is capable of predicting 
it, and conversely; yet this convenient relationship can be seen 
to break down rather quickly in realistic cases (see Scriven, 
1962, for a classical criticism). Often we are in a position to 
predict a fact without thus being in a position to explain it (as for 
example when we trust someone else's prediction). Further­
more, we are often in position to explain a fact without thus 
being in position to predict it (namely, when our explanation is 
not complete, which is typical, or when the explanation does not 
posit a deterministic mechanism, which is also typical). Con­
trary to the thrust ofThagard' s model, it is failed predictions that 
cause us to reject a theory, not facts which the theory could have 
explained if they had obtained, but which did not happen to 
obtain. 

Because the nodes in Thagard' s model are propositions, with 
the increase and decrease of activation levels corresponding to 
increased and decreased fitness for acceptance, we may expect 
that the spreading of activations from one node to the next 
reflects the communication of evidential support. Whereas one 
direction of the symmetrical Principle 2(a) corresponds reason­
ably well to IBE, and is thus a legitimate path of evidence, the 
other direction seems to reflect a big confusion between expla­
nation, prediction, and a consideration of whether a proposed 
explanation is itself plausibly explainable. Thus I disagree with 
Thagard (and Harman) that, in general, an explanation conveys 
evidence for what is explained, and so I reject the symmetry of 
the central Principle 2(a). 
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Does ectto explain explanation? A 
psychological pe,spective 

Joshua Klayman and Robin M. Hogarth 
Center tor Decision Research, Graduate School of Business, University of 
Chicago, Chicago, IL 60637 

Like its author, ECHO has connections with philosophy, artificial 
intelligence, and psychology. The focus of our commentary is 
psychological. What is the status of ECHO as a descriptiYe model 
of explanation? 

At the heart of ECHO lie seven basic principles specified in 
section 2. 2. Indeed, it is hard to imagine any system that 
adhered to these principles and yet acted differently from ECHO 
in any significant way. Thagard skirts the issue of whether these 
arc really meant as descriptive psychological 11rinciplcs, but 
almost all of them could he taken that way aud would be 
interesting as such. 

The ECHO analyses described by Thagard might be viewed as 
tests of these underlying principles. However, from a meth­
odological viewpoint, they do not constitute good tests. Some of 
the cases are just too easy. For example, almost any system that 
tabulated arguments pro and con (e.g., Axclrod's "'cognitive 
maps" [1976] or Franklin's "moral algebra" [Dawes 1988]) 
would conclude from Darwin's arguments that evolution was 
better than creationism. Other tests, it could be argued, are 
tougher, namely, the Peyer trial, which ended in a hung jury. 
But in this case, it is not clear how ECHo's conclusion should be 
evaluated or what an appropriate outcome would be (a hung 
model perhaps?). The descriptive adequacy of Thagard' s princi­
ples could be tested, but this task would be better accomplished 
through direct psychological experimentation. 

From a substantive viewpoint, ECHO docs not model the 
process of thinking, but rather its end result. All of the examples 
presented come from prepared arguments, or from secondary 
accounts. Although ECHO tells us what one might conclude from 
reading Lavoisier's arguments, it is important to recall that 
Lavoisier had already established the intellectual agenda. 
Moreover, once the network has been specified, most of the 
interesting psychological judgments have been made either by 
the person being modeled or by the knowledge engineer. What 
evidence is relevant? Which hypotheses arc supported or con­
tradicted hy it? Which hypotheses arc mutually incompatible? 
What level of explanation is appropriate? Are two hypotheses 
really the same or different? Are those pieces of evidence 
redundant? That ECHO enters late in the process is demon­
strated by how soon one can predict which hypotheses will be 
accepted. The oxygen/phlogiston fight is over by about round 10 
(Figure 11), and even in the difficult Peyer case, the winners aud 
losers are established by about the 15th cycle (Figure 20). 

So is ECHO psychologically vacuous then? Not necessarily. 
ECHO might best serve as a model not of how people think, but 
of what they think. Here Thagard may have missed a useful 
analogy to the work of Pennington and Hastie (1986; 1988), 
which he cites. Their claim is not that the jurors' story structures 
lead them to think the way they do, but rather that the stories 
represent the way they think about the evidence and that their 
decisions more or less follow from the stories constructed. 

As a representational model, ECHO could help us understand 
psychological processes. One intriguing possibility is to use 
ECHO to study the dynamics of belief formation and revision, 
looking at changes in the belief network as evidence is added or 
taken away, as new hypotheses are introduced, or as new links 
between hypotheses are suggested. The work by Ranney and 
Thagard (1988) is a promising effort in this vein. ECHO could also 
provide a framework for modeling and tracing a number of 
interesting psychological phenomena. For example: 

(1) The order of information presentation can have a major 
effect on final beliefs (sec Hogarth & Einhorn 1989). Pennington 
and Hastie (1986; 1988), for example, found that early informa-



tion has a stroug impact on the way subsequent data arc in­
terpreted, and thus 011 the final rcpreseutation. An Ecuo-likc 
analysis could help establish the locus aud fuuction of such 
effects. 

(2) An important feature of ECHO is that hypotheses activate 
and deactivate data as well as vice versa. This clearly happcus in 
the practice of science aud may sometimes be normatively 
appropriate (Koehler 1989). On the other hand, it may induce 
inappropriate "belief perseverance" (Ross & Lepper 1980). 
EcHo might provide a framework for distinguishing the legiti­
mate and illegitimate iufluenccs of hypotheses on the evaluation 
of data. 

(3) In problem solving, sudden insights sometimes emerge 
from incremental chauges in data and hypotheses ("aha"' ef­
fects). Ecuo c:ould be used to elucidate the conditions that 
trigger or enable such restructuring of beliefs. 

(4) Scientists (and other people) collect information to test 
hypotheses. How they do so can influence their beliefs (see 
Klayman & Ha 1987; 1989). Ecuo might profitably be extended 
to model how hypothesis testing strategies affect beliefs and vice 
versa. 

(5) Whereas Thagard treats probability as irrelevant, ECHO 
might be used to gain insight into the origins of subjective 
probabilities. In many ways, the activation states of the various 
hypotheses could be thought of as reflecting subjective "degrees 
of belief' even though they are not probabilities (d. Gluck & 
Bower 1988). 

(6) Whereas Thagard discusses sensitivity analyses concern­
ing the parameters of activation, it may be more instructive to 
apply such tests to the structure of the network. What happens, 
for example, when redundant evidence or straw-man hypoth­
eses are introduced? What if one changes the level of detail or 
the number of layers of explanations-of-explanations? The fact 
that ECHO doesn't specify how these aspects should be deter­
mined is a weakness, but one that provides an opportunity to 
test how such manipulations affect human thinking. 

Finally, although ECHo's status as a descriptive or normative 
model is unclear, it may still have prescriptive value. In particu­
lar, ECHO could find a useful niche as a tool for promoting more 
effective problem solving and scientific exploration. If one could 
elaborate the belief network for an unsettled area of investiga­
tion, it might be possible to identify critical subquestions (e.g., 
"the whole thing hinges 011 whether H1, is right or H 9 "), thereby 
suggesting the more promising issues on which to focus future 
research. Ecuo might also help in resolving conflicts between 
different investigators or schools of thought, clarifying critical 
differences or assumptions ("she says H 1 incohercs with H 4 , but 
you don't''). 

In conclusion, ECHO is not a psychological process model and 
cannot provide good tests of its seven underlying principles. 
However, it succeeds in modeling complex situations with 
underlying processes that are simple, local, plausible, and few. 
That makes it a promising framework for analyzing and under­
standing human processes of hypothesis evaluation and belief 
revision. 

Explanatory coherence in neural networks? 

Daniel S. Levine 
Department of Mathematics, University of Texas at Arlington, Arlington, TX 
76019 
Electronic mall: b344dsl(autarlg.bitnet 

Thagard' s target article addresses a major issue for those in­
terested in either biological or artificial intelligence. The hy­
pothesis testing that he models falls into the class of reasoning or 
inferential processes that have thus far not been addressed 
adequately by connectionist (neural) networks. Some cognitive 
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scientists, such as Fodor and Pylyshyn (1988), have argued that 
such processes cannot, in principle, be addressed within the 
conncctionist framework. But our braius, made up of neurons 
and synapses, manage to perform such reasoning tasks (albeit 
fitfully!); hcuce there must be some way to understand mecha­
nistically how wecau do them. \-Vork like Thagard's is a first step 
toward such a mechanistic understanding. 

Understanding of auy complex cognitive process is facilitated 
by breaking it up into simpler and more accessible processes. 
The major strength of Thagard's work is that it breaks up the 
testing of a theory into the implementation of several rules that 
incorporate simpler tasks. Coherence, incoherence, and analo­
gy can then be represented by various excitatory and inhibitory 
links within a network, and the activation functions of nodes in 
the network can be computed over time. Moreover, some of the 
resulting dynamics are reminiscent of phenomcua occurring in 
connectionist models. For example, feedback between "evi­
dence" nodes and "hypothesis" nodes in Thagard's ECHO can 
lead to selective neglect of data (section 4.8), thus embodying a 
primitive form of the kind of selective attention arising from 
feedback between sensory and motivational nodes in neural 
networks (e.g., Grossberg & Levine 1987). 

Yet significant gaps remain in Thagard's model at both the 
cognitive and the "neural" levels. At the cognitive level, the 
model simply suggests acceptance or rejection of a given theory. 
However, as new data arc uncovered that conflict with the 
current form of a popular theory, the attempt is usually made to 
modify the theory rather than to abandon its entire structure. 
The ECHO model does not suggest a criterion for when and bow 
to modify a theory within its fundamental structure or to synthe­
size parts of two conflicting theories. 

For example, the Darwinian theory of evolution underwent 
modification within its originator's lifetime and continues to 
evolve (no pun intended) to the present day. In my opinion, 
Thagard's target article is incomplete in its treatment of the 
conflict that Darwin himself saw between the hypothesis that 
species have evolved and the relative lack of transitional forms in 
the fossil record. The ECHO simulations of this theory did not 
incorporate the incoherence between that hypothesis and the 
data, but simply combined the hypothesis with Darwin's own ad 
hoc assumption ("the fossil record is incomplete"). I am not well 
versed in the evolutionary biology literature, but my impression 
is that biologists are still, within the evolutionary framework, 
constructing less ad hoc explanations for the paucity of transi­
tional forms. Such explanations include hypotheses that muta­
tions arc not purely random but are guided in someway by other 
mutations or by environmental events. 

At the "neural" level, Thagard, of course, assumed that the 
various belief and knowledge representations in the network 
were "atoms" without giving an explanation for how they might 
arise from lower-order processes. This is not a criticism of his 
work but an expression of a challenge to connectionist theorists. 
Neural network theories of categorization and of segmentation 
of the perceptual environment are already available (sec 
Edelman 1987; Grossberg 1988; and Levine, in press, for 
summaries of recent work). Going from categorization and 
segmentation to constructs, knowledge, and beliefs should take 
only a few more steps (though, as Neil Armstrong would say, 
they are likely to be giant steps). 

Although the work that still needs to be done is vast, Thagard 
should be commended for building a bridge between several 
different cognitive outlooks. The target article should be used as 
a source for others attempting to build realistic theories of 
knowledge representation. 
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Explanationism, ECHO, and the connectionist 
paradigm 

William G. Lycan 
Department of Philosophy, University of North Carolina, Chapel Hill, NC 
27599-3125 

Explanationism, in epistemology or in the philosophy of sci­
ence, is the view that an inference is war­
ranted/ justified/ rational/ reasonable/legitimate/. . when it in­
creases the "explanatory coherence" of a subject's total belief 
set-that is, when the resulting belief set exhibits greater co­
herence than did the subject's initial, preinfcrential belief set. 
Explanationism admits of a weaker and a much stronger version: 
A "weak" explanationist holds just that coherence increase can 
per se justify an inference; a "strong" explanationist maintains 
that coherence increase is the only thing that can ever justify an 
inference. As yet there are very few straightforward strong 
explanationists (Harman 1986; Lycan 1988); even weak explana­
tionism has been hotly contested (Cartwright 1983; Hacking 
1982; van Fraassen 1980). Thagard accepts the weak but rejects 
the strong variety (section I0.4). 

A persistent embarrassment to explanationist epistemology is 
that the notion of "coherence" itself has remained airily vague. 
The only immediately obvious candidate as a specific element of 
coherence is self-consistency or logical coherence, the bare 
absence of self-contradiction. That feature alone gives epis­
temologists little to go on, and precious little else has been said 
on the topic of what makes for coherence. 1 And interestingly, 
even that feature is forgone or at least deemphasized by 
Thagard, who thinks consistency is highly desirable but only in 
its proper place. As his own centerpiece of coherence, Thagard 
suggests that propositions cohere when they explain, when they 
are explained, or when they join with other propositions in 
explaining. 

Though plausible, those suggestions in themselves arc no 
more specific or testable than any other cxplanationist slogans to 
date have been. It is notoriously hard to think of any realistic 
way to implement such slogans. Bnt Thagard's project is pre­
cisely to implement them. 

He begins by taking coherence to he a binary relation on 
individual propositions. In light of the total-belief-set holism 
espoused by explanationists under the original influence of 
Sellars (1963) and Quine (1953: 1960), that choice seems pa­
thetically preliminary and unworkable. Worse, Thagard stipu­
lates that binary coherence is symmetric; for example, a proposi­
tion coheres exactly as much by being explained as by explain­
ing, other relations being equal. (Though explanation itself is 
not symmetric, Thagard argues that the more general notion of 
coherence is.) Yet Thagard relaxes neither assumption. And, 
surprisingly, his results seem none the worse for his deliberately 
naive treatment. EcHo' s overall analyses so far square well with 
the (crude) history of science and with present-day intuitive 
judgment. As Thagard admits, in any given case study, ECHO 
gets a lot for free: particularly (1) the data, (2) the initial 
credibility of the data, (3) the "explaining" relation taken as 
primitive, and (4) the partitioning of data and of explanantia into 
distinct atomic propositions. But even so, ECIIO docs remark­
ably well at its nontrivial subsequent job of theory ranking. And 
if ECHO continues to do well at more subtle and complicated 
theory-ranking tasks, whether or not it also takes over responsi­
bility for some of the presently gratis (I)-(4), that will he fairly 
big news for explanationists, indicating that coherence is not 
only quantifiable but can usefully be taken as binary. 

My only further c1ucstion at this point concerns Thagard's 
allegiance to connectionism as a format for implementing his 
explanationist model. He calls ECHO "a straightforward applica­
tion of connectionist algorithms to the problem of explanatory 
coherence." True, symmetric pairwise coherence of (Jroposi­
tions is easily depicted as a mutually excitatory link between 
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proposition-representing units in a connectionist network 
(though the symmetry of excitation/inhibition strengths as well 
is unusual in connectionist modeling). And the coherence of the 
network as a whole can be represented by the conncctionist 
measure H (aptly respelled by Thagard for the explanationist 
tradition as '"harmany"), which we want to maximize. But these 
notational facts show neither that connectionism lends support 
to cxplanationism nor the reverse. For pairwise coherence can 
he equally well represented (on whatever machine) by a linear 
numerical function, and likewise global "network" coherence 
by an agglomerative arithmetical function on unit "activation" 
values; connectionist architecture has no particular advantage 
over von Neumann architecture in the implementing of 
Thagard's explanationist device. Architecture docs not dis­
tinguish ECHO from classical probability theory, standard or 
nonstandard confirmation theory, or any other known calculus 
of proposition credibility; all of them assign credibility values to 
propositions as a function of the values of other propositions. 
Thus, what Thagard calls "Ec1IO's connectionist character" is 
not strongly marked. 

In saying that, I mean no criticism of Thagard, who is com­
mendably modest in his claims and in particular disavows any 
attempt at "neural plausibility." My point is a general one: It is 
increasingly fashionable to formulate one's epistemological/psy­
chological theory or device in "connectionist" terms, ostensibly 
as opposed to proof-theoretic or other good old-fashioned AI 
terms. But it often unclear what advantage is being secured. A 
model such as Thagard's (or Goldman's 1986), whose "units" 
represent whole propositions, bears no relation at all to neu­
rophysiology, and can derive no glory from some conncctionists' 
early claims to be engaged in neural modeling. Its benefit must 
be some more general computational advantage of parallel 
processors over traditional artificial intelligence programs. But 
seldom are we shown such an advantage. Typically, the models 
in question could have been implemented just as easily on the 
same hardware using traditional architecture. "Connectionist 
models" of this and "conncctionist approaches" to that are often 
not essentially or even notably conncctionist at all. 

NOTE 
l. See, however, the papers featured in a spedal is.sue of Linguistics 

and Philosophy (February 1984; 7[11) on •·coherence," edited by 
Dougla,;; F. Stalker. 

New science for old 

Bruce Mangan and Slephen Palmer 
Department of Psychology, University of California at Berkeley, Berkeley, 
CA 94720 
Electronic mall: palmer(a·cogsci.berkeley.edu 

Thagard' s target article embodies a paradox. On the one hand, 
his theoretical view of the nature of science is progressive: He is 
at home with Kuhn, Lakatos, Quine, and Duhem, with holistic 
explanation and Gestalt shifts. His examples of scientific think­
ing arc of the paradigm type, with classic examples drawn from 
scientific revolntions rather than from the more prosaic realms 
of "normal science." And of c-oursc the model into which 
Thagard puts his analysis of coherent explanation incorporates 
one of the newest fields in cognitive theory and computer 
simulation: conncctionism. 

On the other hand, the actual structure ofThagard's simula­
tion looks much cloi:;cr tn Kant, with a tincture of Bacon. There is 
nothing wrong with Bacon or Kant. As philosophers of science 
they arc a bit out of style, but that docs not make them less 
important or less potentially valuable for current thinking; mnch 
current thinking is built on them. However, if one were given 
the exercise of putting some of the more recent ideas about the 



nature of science and scientific explanation into connectionist 
terms, an architecture rather different from Thagard's would 
probably emerge, one which would take advantage of more of 
the resources of connectionism. For purposes of comparison, we 
will later sketch an example of this sort. But for the most part, we 
will consider some of the less "progressive" components of 
Thagard' s model and see how they contrast with the theoretical 
ideas Thagard seems to believe he incorporated in ECHO. 

Holistic approaches to the philosophy of science go hack at 
least as far as Leibniz (see especially his New Essays 1765/1981) 
and underlie much of Kant's work, the most influential being the 
Critique of Pure Reason (l 787 / 1963) and the Critique of Judge­
ment (1190! 1951). Perhaps the fundamental difference between 
Kant's holistic philosophy of science and the holism of the later 
twentieth century involves the degree to which the underlying 
principles of cognition arc thought to change. For Kant these 
cognitive principles arc a priori and absolutely fixed. 

The Principles of Explanatory Coherence in Thagard's model 
function very much as if they were a priori principles. They arc 
prior to any hypothesis or data and remain invariant from case to 
case; they serve to connect every hypothesis with a set of 
particular data. This complex is then further integrated into a 
single, maximally coherent whole, jointly constrained by a set of 
particular facts, and a set of unchanging principles of analysis 
and explanation. Kant's approach has many similarities. The 
Categories, for example, though analytically distinct, were un­
derstood to operate simultaneously in any cognitive or percep­
tual act. The final aim of cognition was the "synthesis of the 
manifold." The German-speaking focus on the unity of Ge­
stalten stems from Kant, and much of Kant's work aimed to 
explain the cognitive process behind scientific thinking, with 
Newton's method of analysis and synthesis (sec Mackinnon 
1978) as the great exemplar. But for Kant, as for Thagard, there 
was no way the data, or any particular cognition or hypothesis, 
could ever modify the hasic principles that structure the system. 

The Duhem/Quine holism has a very different flavor. For 
Quine (1961) in particular, as Thagard points out, there was no 
absolute distinction between analytic and synthetic proposi­
tions, and propositions were organized into a "corporate hody." 
The first position would have horrified Kant; the second, ap­
plied to cognitive processes, would have passed as a tmism. But 
Quine also held in Two Dogmas of Empiricism (1951/1961) that 
all such principles could he conditioned and modified hy experi­
ence. The corporate body was not fixed. This is the significant 
modern twist to holism, but it is not reflected in Tliagard's 
model. The principles of explanation, as they operate in ECHO, 
are outside the model and thus cannot be changed except from 
the outside. The principles used hyECHO condition the aualysis 
in advance, hut are unaffected by any outcome of that analysis. 

Thagard has a similar problem vis-3.-vis Kuhn (1970). For 
Kuhn and related thinkers, the fundamental principles are also 
malleable. A scientific revolution means a shift in basic princi­
ples of explanation. For example, the movement from Aristo­
telian to Galilean physics was in large part a shift in what would 
count as an explanation (see Feycrabend 1975). The notion of a 
"natural place" ceased to make explanatory sense, and other 
notions such as mathematically specified prediction came to the 
fore. Thaganl' s analysis of Darwin provides a very good example 
of the importance of introducing, or emphash:ing, new explana­
tory principles and not just new empirical findings or hypoth­
eses. As Thagard himself points out, the use of analogy became 
an important explanatory device for Darwin. Although an argu­
ment by analogy is generally weak and usually avoided in 
modem science, Darwin was ahlc to integrate it into his battery 
of explanatory principles bl'cause no better alternative existed 
and useful theoretical work could he done if it were accepted. So 
for Darwin we may say that the explanatory principle of analogy 
from the ohscrved to the unohscrved was in a sense recruited hv 
Darwin"s more specific hypothesis. Although hypothesis and 
evidence can interact in ECI-IO, the dynamic role of explanatory 
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principles at the heart of Darwin's work in particular and 
paradigm shifts in general currently stands outside Thagard's 
model. 

lt is therefore not correct to think of ECHO as modeling a 
paradigm shift. A paradigm shift involves a basic change in the 
mode of analysis, and nothing like this happens in ECHO. Any 
impression that ECHO does model something especially ger­
mane to the process of scientific revolution is mistaken. If 
Thagard's aim is simply to model the general stmcturc of 
scientific thinking, then any specimen of scientific thinking 
should do. Choosing examples solely from revolutionary mo­
ments in science is misleading, as it invites the inference that 
paradigm shift is the process being modelled. Scientific revolu­
tions may involve a Gestalt shift, but not all Gestalt shifts that 
occur in the process of doing science are harbingers of a scien­
tific revolution. One can suddenly "see the point" while doing 
quite ordinary research within a given paradigm. Indeed, ECHO 
looks much more like Kuhn's model of "normal science," in that 
Thagard's explanatory principles do function as a kind of para­
digm, but a paradigm that cannot shift. We will return to this 
point helow. 

Thagard' s model also has an "'inductive'' q11ality that, in effect, 
deemphasizes the role of hypotheses relative to modern think­
ing in philosophy of science. Even some neopositivists recog­
nize the importance of hypotheses as the organizing entity that 
activates and focuses scientific work. The standard contrast is 
with Bacon's (1620/1960) idea that science was to he scru­
pulously inductive. Darwin again provides a good example, in 
this case of the fundamental organizing role of his hypothesis. 
The Origin of Species, as he once wrote to Lyell, involved 
"inventing a theory and seeing how many classes of facts the 
theory would explain" (Himmelfarb 1962, p. 157). 

EcHo's architecture, however, looks inductive in at least two 
ways. The first is harmless hut suggestive: Activation enters 
from the evidence units and can only then move on to the 
various hypotheses. Because the activation can circulate back to 
the evidence units, this may have little real effect on hypothesis 
choice. So although there is the form of cvidentiary priority, it is 
probably without great substance. 

The second way in which an inductive tendency affects 
ECHO's operation is more siguiflcant, because it may have driven 
a wedge between Thagard"s official controlling idea-System 
Coherence-and EC1I0' s achtal method of selecting a hypothesis. 
System coherence, also known as goodness, harmony, and so 
on, is a metric that characterizes the global or holistic degrees of 
consistency within the entire system. As with virtually any 
connectionist network, ECHO must settle into a state of max­
imum goodness or coherence to work at all. But except for the 
fact that activation at any given node will stabilize as the result of 
this process, hypothesis choice in ECHO cannot he directly 
equated with system coherence at all. Hypothesis choice in 
ECHO is determined simply by comparing the discrete activa­
tions of a few hypothesis units with one another. 

In contrast, consider a more "holistic" and "deductive" way of 
choosing between hypotheses, but one that is still roughly 
within the ECHO format: Activation enters the svstcm, not 
through evidence units, hut via a given hypothesis ·nnit that is 
"clamped" on. This hypothesis unit then evokes its own best­
fitting configuration of activation in the network. The hypothesis 
is then deactivated, the next hyrothesis unit is damped on, and 
the process is repeated for each remaining hypothesis. The 
winuing hypothesis is the one that creates the most coherent 
network. Note that in this case we are choosing the best 
hypothesis by observing its dir{'ct effect on the network as a 
whole and not by using any indirect measure such as the relative 
activation of the hypothesis units compared in isolation. Further 
changes in ECHo's architechtre would probably he necessary to 
implement this idea, hut the general point should he dear: The 
present proposal attempts simultaneously (1) to bring ECHO 
closer to the modem view of hypotheses as central organizing 
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devices and (2) to use system coherence directly to evaluate 
explanations in Thagard's sense. 

A further step in EC Ho's development requires a much bigger 
conceptual change. If a connectionist network can be made to 
represent explanatory principles of ECHo's general type, it 
might he possible to move ECHO squarely into the later twen­
tieth century and provide it with mechanisms that will simulate 
paradigm changes. The essential innovation is somehow to 
incorporate the paradigm within the network rather than having 
it stand outside. What needs to be accomplished is to represent 
explanatory principles themselves as units in the net in such a 
way that (a) they functionally implement the excitatory (coher­
ing) and inhibitory (incohering) weights between pairs of data 
and hypothesis units, (b) they arc selectively recruited in fitting 
a hypothesis to data, and (c) they allow the system to learn 
through feedback which explanatory principles arc useful in 
achieving maximum network coherence. 

Although we have not worked out all the details, one way to 
accomplish this might be to model each explanatory principle as 
a multiplicative "gating" unit (Hinton 1981) that modulates the 
excitatory or inhibitory connection between pairs ofThagard's 
present units related by the corresponding explanatory princi­
ple. Thus, if two propositions cohere due to the "analogy" 
principle, for example, the link between them will be gated by 
the "analogy" gating unit such that their mutual excitation will 
occur only if the "analogy" unit is also active (see Figure IA). 
Similarly, if two propositions incohcrc due to some explanatory 
principle, the link between them will be gated such that their 
mutual inhibition will occur only if the relevant gating unit is 
active (see Figure 1B). In this way, the links that represent 
coherent and incoherent relations (a) can be effectively "la­
beled" by their explanatory principle and (b) can be selectively 
turned on and off depending on whether the relevant explanato­
ry principle is "recruited" by the relations among relevant units 
when the to-be-evaluated hypothesis unit is clamped on. The 
recruiting is accomplished naturally by Hinton's gating units 
because of how the three-way multiplicative connections work: 
The product of each pair of units is transmitted to the third. This 
means not only that the explanatory unit will influence the 
activations of the datum and hypothesis units, hut also that the 
activations of the hypothesis and datum units will influence the 
activation of the explanatory unit in the appropriate way. The 
latter operation has the desired effect of selectively turning on 
the explanatory units as needed, thus dynamically recruiting 
explanatory principles in the process of evaluating the network's 
coherence vis a vis the clamped hypothesis. 

Although such a network is based on Thagard' s ECHO model, 
it has distinct advantages for modelling automated hypothesis 
evaluation within a dynamic paradigm. First, explanatory prin­
ciples arc contained within the model itself-in the form of the 
explanatory units-and thus play a direct and crucial role in 
evaluating explanatory coherence. This has the desirable fea­
ture of allowing that, with a host of more complex reasoning 
procedures, the system could actually figure out what relations 
hold between its network units and could make the necessary 
adjustments to represent these relations. Thagard's present 
network cannot possibly do this, because it does not contain the 
principles of explanation in any explicit form. Second, additional 
mechanisms could be incorporated that would amplify or at­
tenuate the activation of specific explanatory units to reflect 
whether the corresponding modes of explanation are in or out of 
favor within the current paradigm. This could be modeled hy 
weights between another "special" unit that is always on and the 
explanatory units, exciting some and inhibiting others. Third, 
and most important, learning mechanisms could be added that 
would automatically adjust the amplification/attenuation of par­
adigmatic explanatory units in keeping with focdback about 
which kinds of explanations have proven useful in previous 
analyses. This would allow the network to change the ba,;;is oft he 
paradigm over time as evidence accrues that certain modes of 
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Figure 1 (Mangan and Palmer). Modeling explanatory princi­
ples as '"gating" units in a connectionist network. Triangular 
symbols represent special connections in which the product of 
each pair of units gets transmitted to the third. Figure lA shows 
how an excitatory connection between a datum unit (D) and a 
hypothesis unit (H) can be implemented by an explanatory 
gating unit (E), and Figure 1B shows how an inhibitory 
connection can be implemented by means of an intermediate 
inhibitory unit. (The dotted line represents an inhibitory 
connection.) 

explanation are valuable in evaluating the coherence of scientific 
hypotheses. In some small percentage of cases, these changes in 
the underlying network of explanatory units might be suffi­
ciently synergistic that an analogue of true Kuhnian "paradigm 
shift" would emerge. 

In summary, if this modified architecture works, it should 
model some additional features of scientific cognition not cap­
tured by ECHO. Among these are: Paradigm or explanatory units 
will manifest various levels of salience by virtue of their weight 
differences, thus operating as an intrinsic part of the system 
rather than as a discrete set of external principles; a hypothesis 
unit will recruit its most compatible explanatory principles as it 
recruits its data; the paradigm subsystem will have the property 
of stability without sacrificing the ability to change substantially 
under, say, data pressure. In other words, if this model (call it 
PAN for Paradigm Analogue Network) is given data and hypoth­
eses sufficiently different from those on which it was trained, the 
weights connecting the paradigm units should slowly change. 
This would, of course, not only change the character of the 
paradigm subsystem and coherence of the data and the hypoth­
eses, but the principles of explanation would simultaneously 
reconfigure. In this way PAN, if it could work, would move closer 
to modeling paradigm shift in its normal sense. We want to 
emphasize, however, that PAN is only meant to illustrate how an 
ECHO-like network might conform more closely to current 
thinking about the process of scientific evaluation of hypotheses 
and so support Thagard's original intuition-namely, that con­
ncctionism may prove useful in probing the nature of science 
itself. 

Acceptability, analogy, and the acceptability 
of analogies 

Robert N. McCauley 
Department of Philosophy, Emory Uriversity, Atlanta, GA 30322 

Thagard proposes a model of explanatory coherence for the 
evaluation of competing explanatory hypotheses in which the 
acceptability of propositions can depend, at least in part, on 
analogical relationships that might exist between a promising 
hypothesis and a successful one as well as between their cxpla­
nanda (as summarized in his principle 3). Thagard's enthusiasm 



about the contribution of such analogies is considerable. He 
repeatedly (and quite justifiably) cites as one of its outstanding 
advantages ECIIO's ability to factor such analogical relationships 
into the assessments it makes. More important, Thagard sets the 
default value of "analogy impact" at 1, which insures that "the 
links connecting analogous hypotheses are jnst as strong as those 
set up by simple explanations." Although it will typically con­
stitute only one of many factors affecting ECtto's judgment, 
Thagard acknowledges that at this setting "analogy can have a 
verv strong effect." 

l~ light ofThagard's aspirations concerning ECIIO's psycho­
logical plausibility, it may be important that in controversies 
about explanatory power, analogy frequently docs not (and 
probably should not) have such strong effects in people's delib­
erations, because the strength of its effects tnrns on the the­
oretical commitments of the reasoner ECHO models. Who that 
reasoner should be is not completely dear. Thagard becomes 
more inclusive as the paper progresses: 

(1) In the scientific cases, Thagard reconstructs the argu­
ments from the perspectives of the winners. Note that Table 1 
includes only one of the evidential propositions (viz., E2) that 
the losers had advanced uniquely, and Table ,3 has none. 

(2) In the legal cases, by contrast, Thagard seems to recon­
struct plausible outcomes of jurors' deliberations that take into 
consideration (sometimes conflicting) evidential propositions 
from both the prosecution and the defense. 

(3) At the end of the paper, Thagard claims finally that ECHO 

is out "to capture both what people generally do and what they 
ought to do." 

These comments raise the question of whose reasoning pro­
cesses guide the programmer and at what stage in the debate 
they do so. The issue, in short, is how in any particular case the 
programmer decides what gets cocled as Ectto' s input. (I am 
suggesting that there is an important disanalogy between the 
scientific and legal cases to which Thagard applies his model.) 

Analogies arc not the sorts of things that programmers can 
code neutrally-nor, for that matter, arc summaries of evidence 
or even contradictions. The problem with analogies cuts more 
deeply than the other two for Thagard's model (a) because it is 
usually not too difficult to get disputants to agree that they are 
disputing, or even to agree about the foci of their disputes, and 
(b) because Thagard presumes from the outset (illicitly, I fear) 
the ability of inquirers (regardless of their theoretical orienta­
tions) to recognize when any proposition explains another. (As 
he states repeatedly, the point of this project is not to offer a 
theory of explanation.) 

The problems with explicating analogical reasoning are 
legion, because virtually anything (from one standpoint or 
another) can be analogous (on one count or another) to virtually 
anything else. The specific problem here concerns precisely the 
fact that there is no such thing as analogy simpliciter. Not only 
the importance but even the mere possibility of an analogy is in 
the eye of the (theoretically influenced) beholder. Analogies 
make sense only from some (often implicit) theoretical stand­
point or other. Again, the problem for Thagard is whose stand­
point reigns in defining ECHO' s input and, in particular, its input 
about analogies. The problem is especially clear if ECHO is to 
apply to cases of scientific reasoning (as with the cases of legal 
reasoning that Thagard discusses) in the midst of the debates, 
that is, before the case is settled. 

Danvin's attempted analogy between artificial and natural 
selection, for example, does not move the nineteenth-century 
creationist. The salient point for the creationist is that artificial 
selection has never resulted in a new species. The traditional 
Danvinian replies that speciation requires much more time. 
Unfortunately, the nineteenth-century creationist (at least) re­
mains unimpressed. If speciation is impossihlc, as creationism 
maintains, then additional time is irrelevant. Furthermore, 
most Victorian creationists had confidence, if not in the pro­
nouncements of Bishop Ussher, then certainly in those of Lord 
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Kelvin, who offered assurance that there was not nearly time 
enough. 

The point of this is not to defend creationism ("devil's ad­
vocacy" is au inappropriate turn of phrase here on two counts), 
but rather to emphasize that during theoretical disputes the 
acceptability of proposed analogies is precisely one of the points 
at issue. It is exactly when disagreements about the relative 
merits of competing explanatory hypotheses arise that deter­
minations about the acceptability of theoretically inspired analo­
gies is up for grabs. It is only after the resolution of such debates, 
when one of the competing explanatory theories emerges tri­
umphant, that we confidently pronounce on the value of various 
analogies. Consider Francesco Sizi's argument against Galileo 
that there must be seven planets (and therefore no moons 
around Jupiter) because human beings by nature have seven 
holes in their heads (Hempel 1966)! 

If ECHO offers normative guidance about the role of analogy in 
explanatory reasoning, then, concerning any particular analog­
ical proposal, it only docs so, at best, after the fact. But that 
could well be the place to which epistemology has come. 

Optimization and connectionism are two 
different things 

Drew McDermott 
Computer Science Department, Yale University, New Haven, CT 06520 
Electronic mall: mcdermott@cs.yale.edu 

My main objection to Thagard's target article concerns its 
emphasis. The word "connectionism" is really out of place in it. 
The whole idea of connectionism is that mental function ought to 
be modeled by devices consisting of large numbers of smallish 
units operating in parallel and communicating via fixed links­
that is, the way the brain presumably docs it. Thagard' s paper 
proposes a model of explanatory coherence based on minimizing 
a certain energy function. The independent variables are the 
activation levels of various propositions. The objective function 
is a sum, H, of terms that express the support and inhibition 
relationships between these propositions. (See equation I.) It is 
not clear how to judge whether H is a good measure of explana­
tory coherence, but the use of connectionist "settling" tech­
niques is a distraction. They are probably unnecessary, because 
the number of independent variables is quite small. I am no 
expert, but I would guess that standard numerical-optimization 
techniques (e.g., conjugate-gradient descent) would do better 
than simulating a network of "units"; and they might focus 
attention better on the properties of the H function. 

Connectionist techniques are distracting in another way, 
because their use inevitably suggests that the author is hypoth­
esizing the existence of fixed locations for various hypotheses. 
He isn't, of course. His program must wire up the network anew 
for every problem. (Many connectionist papers speak as if the 
inevitable software simulation were a stopgap until the hard­
ware arrives, but Thagard can't do that: His whole approach is 
based on software.) The apology for the use of connectionism in 
section 8.1 is really quite puzzling. There is no more connec­
tionism in this algorithm than there is in GPS. 

With this confusion cleared away, we can examine the real 
issue raised by the target article, which is whether the H 
function is a good measure of explanatory coherence. My con­
jecture is that it's completely adequate. As with all measures of 
success in non monotonic inference problems, the details of the 
measure function are swamped by the properties of the al­
gorithm that generates things to measure. That's because if this 
algorithm overlooks something important, any fine-tuning of 
the combination of the remaining factors is futile. Unfortunate­
ly, we know very little about explanation generation. So it's too 
early to tell whether, for instance, it is an asset or a liability that 
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Thagard's algorithm gives weight to links between propositions 
based purely on the structure of the problem, and not on the 
content of those propositions. 

Coherence and abduction 

Paul O'Rorke 
Department of information & Computer Science, University of California, 
Irvine, CA 927 t 7 
Electronic mall: ororke@ics.uci.edu 

The theory of explanatory coherence presented by Thagard 
focuses on the problem of selecting a particular explanation from 
among given competing alternatives. He presents an interesting 
set of principles designed to capture the notion of explanatory 
coherence and provides a conncctionist method for evaluating 
competing explanations. Thagard's ideas are stimulating and 
worthy of further study. At present, however, I see three maj'or 
problems with his approach. First, he appears to take a modular, 
sequential approach to the construction and evaluation of expla­
nations. Second, coherence seems to be the only criterion used 
to decide whether to accept or reject explanations. Third, there 
seems to be no distinction between passive, unconscious accep­
tance processes and active, conscious evaluations of competing 
explanations. 

What's wrong with a modular, sequential approach to con­
structJng and evaJuatlng expJanatlons? Thagard' s system is given 
explanations, but ECHO does not address the problem of how 
they can be generated. At the University of California at Irvine, 
my students and I have built a number of computer programs for 
automating abduction. Initially, we tried to maintain a separa­
tion between our models of the processes responsible for con­
structing explanations on the one hand and our evaluations of 
explanations on the other. However, in computational experi­
ments involving physical and psychological explanations, our 
initial systems sank in seas of explanations, most of which were 
totally implausible. We were forced to introduce evaluation into 
the construction process in order to control the search and 
reduce the number of explanations generated. We now believe 
that construction and evaluation must he integrated, and co­
herence must play a role in the generation of explanations. 

What's wrong with coherence as the sole criterion for deciding 
whether to accept or reject a theory? Unfortunately, coherence 
is not the only factor that plays a role in constructing and 
evaluating explanations. We have found that an agent's goals 
and priorities play important roles in evaluation. For example, 
in diagnosis one typically constructs explanations of abnormal 
behaviors of devices or systems. In diagnoses that occur in 
diverse application areas such as medicine, space technology, 
and so on, the consequences of explanations turning out to be 
correct or incorrect play important roles in evaluating the 
explanation. Engineers working on diagnostic systems for the 
space station, for example, arc explicitly directed by NASA to 
develop systems that attend not only to the plausibility of 
explanations but also to the associated risks. A flaw in critical life 
support, even if it is considered highly implausible, should be 
attended to sooner than a more plausible, but less dangerous 
flaw because we generally give high priority to staying alive. 

In Thagard' s example of the Peyer trial, and in legal examples 
in general, the fact that a decision against the defendant entails 
undesirable consequences for him should play a role in the 
decision-making process. When a jury decides a case, they not 
only reason about what happened; they also reason about what 
will happen as a result of their actions. They worry about the 
possibility that they will unjustly let a criminal go unpunished, 
or punish an innocent. In our society, a strong desire not to 
punish innocents has been institutionalized in the concept of 
guilt "beyond a reasonable doubt." Thagard speculates that this 
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sort of bias might be implemented by tweaking ECHO param­
eters, but it is likely that machinery for reasoning about goals, 
goal priorities, and consequences of actions with respect to goals 
will also be necessary. 

Actions and conscious reasoning play an Important role Jn 
evaluation. My final major worry is that Thagard's principles of 
coherence and conncctionist implementation are best suited to 
modeling passive, unconscious sorts of acceptance processes. 
One can imagine this sort of evaluation and adoption of explana­
tions taking place subconsciously-for example, during natural 
language processing. Waltz and Pollack (1985) describe a con­
nectionist model similar to ECHO that parses "semantic gardcn­
path" sentences so as to produce activation histories that seem to 
simulate our own subjective experiences with these sentences. 
Given a sentence such as 'The astronomer married the star," 
their system goes through a sequence of patterns of activation 
representing different interpretations of the sentence, just as 
people seem to realize unconsciously that the celestial object 
meaning of the word "star" cannot be the object of marriage so 
the astronomer must be married to an actress. 

The evaluation of explanations associated with complex diag­
noses, legal arguments, and (especially) scientific theories 
seems to require much more active reasoning and decision­
making processes. In some situations it is not necessary or even 
prudent to accept one of a competing set of hypothetical expla­
nations. Instead, it may be necessary to try to gather more 
information. In addition, it is often useful to distinguish be­
tween explanations that can and cannot be acted on, because the 
former tend to be more useful. In diagnosis, an explanation that 
pins down the source of a fault to particular malfunctioning 
components is more useful in that it suggests the obvious repair 
plan of replacing the had parts. Similarly, in science, theories 
that make predictions and suggest actions that can be taken to 
verify or falsify the predictions arc preferred over theories with 
no observable consequences. 

This argument suggests that a full account of the difficult 
examples chosen by Thagard will probably have to include 
computational models of rational deliberation and planning. 
This is one reason why some artificial intelligence (AI) re­
searchers believe that abduction (at least as AI researchers use 
the term) is probably "AI-complete." Rather than taking this as 
an indication that modeling abduction is impossible or that 
Thagard has taken on an intractable problem, I take this as a sign 
that he is working out a view of a piece of a problem of 
fundamental importance. It will be interesting to see his ideas 
combine and compete with ideas proposed by Al researchers 
and others attempting to discover principles underlying cog­
nitive processes associated with explanations. 
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Probabillty and normatlvity 

David Papineau 
Department of History and Philosophy of Science, University of Cambridge, 
Cambridge CB2 3RH, England 

Ec110 is an elegant and impressive program, hut I have doubts 
about some of the philosophical and psychological claims made 
on its behalf. 

Thagard argues that the model of theory evaluation embodied 
in ECHO is superior to probabilistic models. In particular, he 
doubts the availability of the various probability j'udgments that 
probabilistic models need as input (sections 8.2 and 10.3). 

However, ECIIO itself assumes independc11tly given ''expla­
nation" and "contradiction statements" as input. Often these 



seem little different from probability judgments. For example, 
in section 2.3 (para. 8), Thagard says that alternative explana­
tions are treated as contradictions because "their conjunction is 
unlikely." More generally, ECHO deals with choices between 
competing explanatory hypotheses, but not with which hypoth­
eses are allowed to enter the competition. This, too, arguably 
presupposes judgments of prior (im)probability. 

It is true that ECHO, at least as so far applied (but see section 
4.1), starts with nonquantitative "explanation statements," 
rather than numerical probability inputs, and correspondingly 
yields "on-off' conclusions, rather than numerical probability 
outputs. Thagard takes this to enhance the psychological realism 
of ECHO (sections 3, 8.2, I0.2). However, even if we grant 
Thagard this psychological realism for the moment, we can still 
have doubts ahout the nonnative significance of ECHO. For even 
if our natural psychological inclinations arc qualitative, surely it 
would he better, in both scientific and legal contexts, to be 
sensitive to the prior probabilities of explanatory hypotheses 
and the varying degrees to which they render the evidence 
unsurprising, and to have a wider repertoire of responses than a 
simple "yes" or "no." 

Moreover, given this normative point, we can then ask 
further questions about ECHO's psychological realism. For, 
after all, theory choice in both law and science is a highly self­
conscious enterprise, where practitioners are quite capable of 
recognizing that it is better to reason probabilistically. And I 
would argue that practitioners in both areas have widely recog­
nized this, and so often do reason probabilistically. (For exam­
ple, in civil cases juries are explicitly required to decide "on the 
balance of probabilities," in contrast with criminal cases whose 
special circumstances require guilty verdicts to be "beyond a 
reasonable doubt.") 

Even if simple qualitative evaluations of explanatory hypoth­
eses are in some sense "natural" to human beings, self-conscious 
reflection can nevertheless lead to different people in different 
contexts opting for more sophisticated quantitative ways of 
evaluating hypotheses. This seems to me to make it doubtful 
that "hypothesis choice" is a well-defined psychological catego­
ry in the first place. 

There is a general moral here: Model-builders who are after 
psychological realism should concentrate on mental processes 
like visual pattern recognition or speech processing and should 
shun the kind of mental process traditionally discussed by 
philosophers. For the latter processes arc precisely of the kind 
whose identities are constantly being transformed and frag­
mented by self-conscious normative reflection. 

Explanatory coherence In understanding 
persons, Interactions, and relatlonshlps 

Stephen J. Read• and Lynn C. Miller" 
aDepartment of Psychology, University of Southern California, Los Angeles, 
CA 90089-1061 and bDepartment of Psychology, Scripps College, 
Claremont, CA 91711 
Electronlc mall: a,ead(ciuscvm.bitnet 

We examine the implications of Thagard' s model of explanatory 
coherence for two major issues in social psychology and the 
psychology of personality: (1) the role of coherence in a recently 
proposed theory of attribution, and (2) the role of coherence in 
individuals' models of themselves and others. 

Coherence in attribution theory. Recently, several authors 
(e.g., Lalljee & Abelson 198.3; Read 1987) have presented a 
theory of attribution based on Schank and Abelson's (1977) 
knowledge structure approach. According to this theory, the 
typical attributional problem is to explain a sequence of actions 
involving one or more individuals. To understand such se­
quences, people use detailed social and physical knowledge to 
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construct a causal scenario that characterizes how the actions of 
the individual(s) hang together to form a plan aimed at the 
attainment of some goal(s) (Read 1987). Thus, social explanation 
is akin to creating a story of how actions by individuals go 
together. 

To understand a sequence of behaviors, people must often 
characterize it in terms of higher-order structures such as goals, 
themes, scripts, or plans, which describe the relations among 
the actions and go beyond the individual actions (Abelson & 
Black 1986). For example, going beyond the causal relations of 
the individual actions and recognizing that a sequence of events 
is a drug arrest suggests that the participants arc acting as they 
do because of their roles as drug dealers or undercover police 
officers. Or realizing that a sequence of events is an assault 
rather than two lovers playfully wrestling leads to very different 
explanations of the behavior. 

How do we decide whether a particular structure is appropri­
ate? One major criterion is how coherent it would be with the 
actions (Read 1987; Wilensky 1983). Thagard's model provides 
an elegant approach to understanding how people might choose 
among alternative knowledge structures as characterizations of 
action sequences. 

Different scenarios can be constructed out of the same set of 
facts, using different knowledge structures. Which knowledge 
structures are chosen and which scenario is constructed de­
pends on which is more coherent. For example, if two different 
structures, lovers' wrestling and assault, were potentially ap­
plicable, we should prefer the one that requires fewer assump­
tions (simplicity) and is able to handle more of the sequence 
(breadth). In addition, we might prefer structures that are 
consistent with previous interpretations of similar events (analo­
gy; e.g., we recently observed a couple roughhousing in a park). 
The idea that a hypothesis will be more coherent if explained by 
other hypotheses further suggests that a characterization of an 
event sequence would be more coherent, and thus more likely 
to be selected, if it could he explained by other features of the 
persons involved, such as personal characteristics, goals, or 
abilities. Finally, Thagard' s model suggests that we should be 
unsatisfied with the application of a structure to a sequence ifit 
leaves many of the facts and events unaccounted for. 

Coherence of models of personality and persons. How do the 
various behaviors, belief<;, and motives of a particular person "fit 
together" to form a coherent system?This question is an old and 
important one for personality theory (Allport 1964; Read & 
Miller 1989a; 1989b), but one that is particularly troublesome 
methodologically. 

Let us consider howThagard's simulation may help us explore 
such idiographic coherence quantitatively. First, Thagard ar­
gues that 

a system Swill tend to have more global coherence than another if (1) 
S has more data in it; (2) S has more internal explanatory links 
between propositions that cohere because of explanations and analo­
gies; and (3) S s11c.-ceeds in separating coherent s11bsystems of proposi­
tions from conflicting subsystems. (sect. 2.3, para. 12) 
Individuals are likely to differ in the extent to which their 

systems (e.g., belief systems, self-system) cohere. Thagard's 
model suggests, for example, that more coherent self-systems 
would be those in which a given individual has more accessible 
self-relevant data, those in which there are more "internal 
explanatory links" between belief<;, behaviors, and self-concep­
tions, and those that "succeed in separating coherent sub­
systems" of beliefs, behaviors, and self conceptions "from con­
flicting subsystems." Thus, an individual might understand 
that one subset of behaviors, self-conceptions, and beliefs co­
heres under some circumstances (e.g., with a close friend to 
whom one can make intimate disclosures) but a different set of 
beliefs, self-conceptions, and behaviors would cohere under 
different circumstances (e.g., with strangers). Such conflicting 
subsystems might then cohere at a higher level for people 
because they recognize a higher-order explanation that links 
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them (e.g., avoiding rejection is usually an important goal but 
is deactivated when with accepting friends). 

We could also assess how the svstcm coheres-that is, we 
could examine why behavioral ohse'rvations and beliefs cohere 
for an individual the wav thcv do. How docs the individual 
weigh beliefs and behavi~rs in' selecting hypotheses and what 
hypotheses and analogies support this belief system? What 
would happen if different alternative hypotheses about the self 
were introduced? What would it take to change the activation of 
leading hypotheses for a particular individual? 

Thagard' s approach also allows ns to examine why different 
individuals' models of the same person differ. Presumably, 
individuals who have more data about the person being exam­
ined (e.g., close friends) will have more coherent representa­
tions. Also, the order in which we arc exposed to various pieces 
of information can affect the likelihood that an individual will 
select a given hypothesis and retain it (even in the face of 
counterinformation and equally plausible alternative hypoth­
eses). Analogies to past relationships and preexisting knowledge 
structures (e.g., stereotypes) may also bias the process of build­
ing models of persons in the current relationship. 

In addition, for models of self, interactions, others, and 
relationships, how docs the coherence of the models change as 
new information is added to the system? Could we examine 
changes in such systems developmentally, during therapy, or 
during the development and dissolution of relationships? These 
are all exciting questions, and Thagard' s model may prove an 
important step in providing a methodology to address them 
idiographically-that is, at the level of the unique individual or 
relationship. 

Measuring the plausibility of explanatory 
hypotheses 

James A. Reggia 
Departments of Computer Science and Neurology, University of Maryland, 
College Park, MD 20742 
Electronic mall: reggia@mimsy.umd.edu 

Thagard' s theory of explanatory coherence (TEC) provides a 
broad and useful framework for considering the plausibility of 
explanatory hypotheses. Because TEC is intended to apply to 
"reasoning in everyday life," it seems appropriate to compare it 
with a related but less general framework, parsimonious cover­
ing theory (PCT), which also provides an application­
independent theory of explanatory coherence (Rcggia et al. 
1983; 1985). PCT differs from TEC in that it is restricted to 
consideration of explanatory hypotheses in general diagnostic 
problem solving, although it has been adopted for a number of 
nondiagnostic applications. Because of its restricted ap­
plicability, it does not address some issues of TEC (e.g., analogy). 
However, like TEC, PCT precisely defines the notion of explana­
tory hypotheses and what makes them plausible, has been 
applied to specific applications, and has been formulated as a 
connectionist model (Peng & Reggia, in press; Wald et al., in 
press). Because of space limitations, I will restrict my attention 
to comparing TEc' s measure of "degree of coherence" (Principle 
2c) to the related notions of plausibility and probability of 
explanatory hypotheses in the simplest version of PCT. Our 
experience with PCT and diagnosis suggests that counting 
propositions (TEC Principle 2c) is an inadequate measure of 
"coherence" or plausibility. (Principles 6b and 7 also appear to 
conflict with PCT, but are not considered here.) 

In the simplest form of PCT, there is a set of disorders, D, and 
a set of manifestations ("symptoms"), M. For each disorder, di, 
there is a connection (association) between di and each man-
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ifestation, mj, that can be caused by di. A subset of:\1, denoted 
M +. A set of disorders, D 1, is called a cover of the given :\1 + 
when the disorders in D 1 can cause all of the manifestations in 
M +. A set of disorders, D1, is an explanatory hypothesis if (1) D

1 
is a cover of :\1 +, and (2) D 1 is parsimonious. Roughly speaking, 
asserting the prcscncc/abscncc of manifestation mi or disorder 
di in PCT corresponds to a proposition in TEC, and a par­
simonious cover represents specification of the function defin­
ing system coherence (TEC Principle 7). 

A difficult problem in diagnostic reasoning theories in gener­
al, and in PCT in particular, has been how to define precisely 
what is meant by the "best," "most plausible," "simplest," or 
"most parsimonious" explanation for a given set of facts (de Kleer 
& Williams 1986; Josephson et al. 1987; Peng & Reggia 1987; 
Pople 1973; Rcggia et al. 1983; 1985; Reiter 1987). Previous 
notions of plausibility have largely been based on suhjectioe 
criteria; we consider two of these here. 

An early criterion of plausibility used in PCT and by others is 
similar to TEC Principle 2c. It is called min;mal cardinality: 
Explanatory hypotheses with the smallest number of hypoth­
esized components are preferable. In applying PCT to specific 
diagnostic problems, it quickly became evident that minimal 
cardinality is an inadequate measure of plausibility. For exam­
ple, in medical diagnosis two common diseases are often more 
plausible than a single rare disease in explaining a given set of 
symptoms (Rcggia et al. 1985); and in electronic diagnosis 
analogous examples exist (Reiter 1987). For this reason, PCT as 
well as other models of diagnostic inference have adopted a 
more relaxed criterion of plausibility called irredundancy: A set 
of disorders, D 1, that covers (causes all of) the manifestations in 
M + is irrcdundant if it has no proper subsets that also cover 
M +. Although it docs not favor the smallest set of propositions 
(as does TEC Principle 2c), irredundancy is a preferable criterion 
because it handles cases like the medical and electronics exam­
ples referenced above while still constraining the number of 
disorders in a hypothesis. However, irredundancy has the 
problem that in larger applications it may identify many im­
plausible hypotheses as well as the plausible ones; and as 
indicated below, in some cases it may still fail to identify the 
most reasonable hypothesis. 

The criteria used in most theories of explanatory plausibility, 
including those of TEC and PCT, are subjective. An important 
question is whether one might devise objective measures of 
plausibility and then ask under what conditions various subjec­
tive criteria would work or fail according to the objective 
criterion. We have recently generalized Bayes's Theorem to 
apply to a restricted class of diagnostic problems formulated in 
PCT (Peng & Reggia 1987). Each disorder, di, is associated with 
its prior probability, pi. Each casual link is associated with a 
number, cij• the causal strength from di tom. representing how 
frequently di causes mr Under assumptions fess restrictive than 
those traditionally made with Bayesian classification, the rela­
tive likelihood L(D 1,M +) of any potential explanatory hypoth­
esis D 1 given the presence of M + can he calculated using 
relevant pi and cij values. Using the objective, albeit limited, 
measure L(D 1,M +),one can ask under what conditions various 
plausibility criteria such as minimal cardinality, irredundancy, 
and others would he guaranteed to identify the most probable 
hypothesis. 

Analytical treatment of this question leads to a number of 
interesting results (Peng & Reggia 1987). For example, minimal 
cardinality is an appropriate criterion only when, for all disor­
ders, di, the prior probabilities are very small and about equal, 
and the cii arc fairly large in general. OtheIWise, it may be that 
the most probable explanation does not have minimal car­
dinality, supporting the conclusion above that counting is not 
sufficient. 

Thagard points out (section 8.2) correctly that in some non­
diagnostic domains the probabilities do not exist. They do not 



really exist in diagnostic applications either. However, hccause 
TEC and PCT are intended to lie theories that encompass 
diagnostic reasoning, they cannot ignore measures of likelihood 
that go beyond countiug, be they numeric probabilities or other 
nounumcric, subjective measures. Some measure of "prior 
plausiltility" or "intrinsic merit" and "conditional plausiltility" 
of causatiou is csseutial in diagnosis and seems to me to be just as 
important in scientific and legal reasoning (Thagard ma.y agree 
with this to some extent; sec section 4.1 011 ECHO). Basiug 
cohcreucc on counting propositions as in TEC Principle 2c-would 
therefore appear to need revision, at least to encompass diag­
nostic inference. 

TEC provides a ltroad and useful framework for considering 
these awl related issues. Although one can always argue ahout 
specifics, as l ha\'e done here, the overall thrust of Thag;ard's 
work strikes me as being in the right direction, and it will he 
very iutcresting tu follow its evolution. 

EcHo and STAHL: On the theory of 
combustion 

Herbert A. Simon 
Department of Psychology, Camegie·Meffon University, Pittsburgh, PA 
15213 
Electronic mail: has@_,cs.cmu.edu and has(U,a.gp.cs.cmu.edu 

Thagard takes the theory of combustion as his first example of 
how ECHO uses "explanatory cohcreuce" to evaluate scientific 
theories: in this case to choose between the competing oxygen 
and phlogiston theories. A similar task was undertaken a few 
years ago, using an entirely different computational architec­
ture, the STAHL program of Langley ct al. (1987). We have here 
a valuable opportunity tu compare connectionist and symbolic 
solutions to problems of this kind. What tasks du the two 
systems perform, respectively? What kinds of information and 
assumptions have to be provided them? What heuristics do they 
use in their reasoning? What kinds of conclusions can they 
reach? 

The tasks. EcHo' s task is to compare the relative compatibility 
of two theories with a body of evidence. STAHL's task is to derive 
a theoretical explanation of a body of evidence. Although the 
tasks of ECHO and STAHL seem very similar, we shall sec that the 
two programs differ drastically in terms of the information that 
must be provided to them by the user, and in terms of how they 
use the empirical evidence to reach their conclusions. STAHL 
requires far fewer and weaker givcus than ECHO and makes its 
own inferences about logical relations among the propositions; 
these relations must be posited by the user of ECHO. 

The givens. ECHO must be supplied with sets of propositions 
to (1) represent the empirical evidence, (2) represent the two 
sets of competing propositions, and (3) designate which proposi­
tions support or contradict which other propositions (see 
Thagard's Taltles l and 2). In addition, ECIIO is provided with 
signed weights for the members of (3), whose magnitudes arc 
adjustaltlc system parameters. 

ECHO makes no use of the semantic or svntactic structure of 
any of the propositions of (1) and (2), but ·only their names as 
these appear in the expressions of (3). Hence, the logical con­
nections among the propositions are not inferred from them but 
are posited by the user, as are the initial "strengths" of these 
connections. 

In contrast, STAHL is supplied only with propositions that 
correspond to ECIIO's evidence propositions (1). STAHL infers 
additional propositions by using a small set of heuristics to 
reason from the evidence. The logical connections among prop-
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ositions emerge from the structure of the propositions them­
selves, without requiring the input of either explanatory or 
contradictory propositious like those exhibited in Thagard's 
Taltle 2. ~forcover, STAHL has uo parameters to represent 
"streugths" of conncctirn1s. 

All of STAHL's iuputs, and its inferred propositions as well, are 
(qualitative) descriptions of chemical reactions in terms of inputs 
and outputs. For example, given the iuputs: 

(reacts iu1mts {chart,'Oal air} outputs {phlogiston ash air}) 
(reacts inpl1ts {calx-of-iron charcoal air} outputs {iron ash air}) 

STAHL iufers: 

(components of {charcoal} are {phlogiston ash}) 
(coi11ponents of {irm1} are {calx-of-iron 11hlogisto11}) 

The latter two statcmeuts cau be recognized as a standard form 
of the phlogiston theory. When the input reactions are 
changed~for example, to specify that input of red-calx-of-mer­
cury yields the outputs mercury and oxygen~STAHL arrives at 
Lavoisier's oxygen theory. 

The heuristics. ECHO uses a cormcctionist scheme for assign­
ing weights to (the names of) hypotheses on the basis of weights 
exogenously assigned to (the names of) evidential propositions 
and linkages. EcHO has no way of determining endogenously 
the logical relations among propositions, whether supportive or 
contradictory. 

STAHL' s reasoning is based on five heuristics for inferring the 
components of substances from the inputs and outputs of chem­
ical reactions involving these substances (Langley ct al. 1987, 
pp. 228~34). For example, the IDENTIFY-COMPOUNDS heuristic 
reads: "If A is composed ofC and D, and Bis composed ofC and 
D, and neither A contains B nor B contains A, then identify A 
with B." The other heuristics are called INFER-COMPONENTS, 
REDUCE, SUBSTITUTE, and IDENTIFY-COMPDNENTS, The in­
ferences STAHL makes depend on the order in which reactions 
arc presented to it; it can back off from reasoning that produces 
contradictions and try alternative analyses (Langley et al. 1987, 
pp. 242~45). It cannot be stressed too strongly that STAHL does 
carry out actual reasoning on the basis of heuristic inference 
rules drawn from the practice of chemistry. 

The conclusions. STAHL's reasoning is limited to chemistry. 
To operate in another domain, it has to be provided with a 
knowledge representation and heuristic inference rules for that 
domain. Ec110 is quite general, but only because all of the 
domain-specific knowledge is provided to it by the user in each 
application and it is oblivious to the content of its propositions. 
Moreover, ST AHL invents its own hypotheses, whereas ECHO 
must be provided with them. ECHO therefore operates at a 
much more superficial level than STAHL. 

Both STAHL and ECHO will corroborate the oxygen theory of 
combustion if given Lavoisier's "facts," and the phlogiston 
theory if given STAHL's "facts." The difference in interpretation 
depends on whether one attends to the oxygen input and carbon 
dioxide output to the combustion reaction, or to the output of 
flame and smoke (caloric), respectively. Contrary to popular 
accounts, the advance to the better theory did not depend on 
Lavoisier's quantitative measurements, but on the growing 
awareness of the participation in the reaction of the enveloping 
gases, and the striking of heat and flame from the list of 
"substances." STAHL, which uses no quantitative information, 
makes the switch in interpretations quite readily (Langley et al. 
1987, pp. 248-51). 

Summary. A comparison of ECHO with STAHL in application to 
the theory of combustion shows that the latter provides a far 
deeper account of the development of theory than the former, 
handling endogenously many of the clements that must be 
provided to ECHO as givens. STAHL carries out genuine reason­
ing; ECHO does not. 
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Theory autonomy and future promise 

Matti Sintonen 
The Academy of Finland and Department of Philosophy, University of 
Helsinki, 00170 Helsinki, Finland 
Electronlc mall: msin1onen@cc.helsinki.fi 

I much admire Thagard's way of baking a variety of virtues into 
explanatory coherence. My queries and suggestions center on 
the notion of promise. Take DatWin's theory. Although Darwin 
thought that its greatest asset was its capacity to group and 
explain classes of phenomena, few details were available. The 
theory was more akin to a research program, with DH2-DH3 as 
basic tools, and El-El5 as problem areas (subdomains or 
applications; see Thagard 1978). 1 understand that singular 
evidential propositions have been left out for expository rea­
sons, but there is also an issue of principle. The choice seems to 
be between a promising project and already articulated rivals, 
and this involves pitching possible future unification against less 
unified but established breadth. 

I wonder how F.CH0 handles promise. Although the notion is 
needed (see section 4.4), F.CH0 looks back to certified explanato­
ry propositions and not forward to future prospects. Ec110 
inputs are tied to an instant in time, and so are the verdicts for 
global coherence in the connectionist formula (see section 4.9). 
Does F.CH0, unlike Thagard's earlier account (1978) of dynamic 
consilience, gesture towards instant rationality (see Lakatos 
1970)? 

This cannot he the intent, and indeed F.CH0 is prepared to 
give a hypothesis a new hearing if new explanatory sentences arc 
added (section 4. 2). More dynamics can be brought in if not only 
rival theories but also consecutive versions of a tbeory can be 
brought to trial, so that H(t') may be higher than H(t), fort' later 
than t. But note that dynamic tinkering with theory presupposes 
identity through change and a clear notion of theoretical 
commitments. 

Take theory identity first. There is of course the Darwinian 
core DH2-DH3, and to F.CHo's credit, structure emerges as a 
result of its operation, crystallizing in high connectivity. (Note, 
though, that to explain DH2, DH4should be appended with the 
cohypotheses that some variation is relevant to survival and 
reproduction, and that properties are largely inherited.) How 
helpful this is is hard to say, for the onus of deciding what 
explains what is still on the programmer. Pl (processes of 
induction; section 7) seems helpful in tracing origins, but Pl 
rules hover on the same conceptual level as explanatOry proposi­
tions. The principal reason for being suspicious ahout automatic 
input is that a formal-logical inference can be given explanatory 
and nonexplanatory interpretations, with no formal way to 
distinguish between them (sec Giirdcnfors 1976). 

What F.CH0 could do is acknowledge more clearly a hierarchy 
with core hypotheses on top and auxiliaries under it: The former 
carry the banner while the latter reach toward so far uncon­
quered suhdomains. The division is visible in Table 3, but the 
very idea of promise indicates that the two are on different 
levels. The latter are not all at hand when the core is proposed, 
and they are not as central. Actually, matters are more compli­
cated: Some auxiliaries span entire suhdomains, whereas others 
are very short-lived and needed for singular explanations. A 
hierarchy of levels "harmanizes" (section 4.9) with F.CH0: lt 
allows for layers of explanation (cf. section 6.1), avoids crude 
holism (section 10. I), and organizes constraints. For unification 
has to do with subdomains brought under one umbrella, where­
as simplicity is a constraint on auxiliaries within a suhdomain. 

Next, a remark about pragmatic reference to "explanations 
and hypotheses actually proposed by scientists" (section 2.3). 
The text gives the impression that these are needed to discredit 
explanations with irrelevant cohypothcses: Ecno is discharged 
of the obligation to consider Pl&P2 (where P2 is irrelevant), 
because it doesn't surface as a serious option. But F.CH0 docs 
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better than this: irrelevant premises decrease coherence, and 
therefore overt pragmatic reference here is otiose. Principles 
2(b)-(c) explain why scientists actually do not flirt with irrele­
vant co hypotheses (and why explanation is more restrictive than 
implication). But this may he the intended reading anyway. 

With these pragmatic hurdles behind, there is the tough one 
of theory claim ahead. Choosing between networks presupposes 
shared data. But theories have some autonomy in selecting the 
territories they claim and in slicing them into suhdomains. This 
problem should worry whoever feeds F.CH0, for it conspires 
with the problem of promise, threatening to let autonomy run 
rampant. Actual theories often promise to carry you through 
thick and thin, but have relatively scant justification in terms of 
detailed results. Moreover, the secured results may concentrate 
on a few suhdomains, and the claim of a theory to handle others 
may he frustrated, either because the main hypotheses are 
unsuitable or because carrying out the detailed program flouts 
other constraints. Thus prospected unification or simplicity may 
crumble on closer inspection. 

One reaction is to downplay troubles, as in cognitive disso­
nance elsewhere. Ec110 acknowledges that not all data arc 
treated equally. Theory autonomy explains why data excitation 
values differ, suggesting another interpretation for numerical 
parameters in explanatory statements like (EXPLAIN (111) 
El.9). A weakened link between Hl and El could reflect either 
El's dubious epistemic status (Thagard's proposal) or, equally 
well, its dissimilarity with unproblematic exemplars within a 
class that Hl should address. E5 in Figure 8 could he epis­
tcmically impeccable bnt deactivated becansc it is marginal to 
H l's concerns. 

As to autonomy, there is noway to force a problem on a theory 
unless it commits itself to a set of domains and paradigm 
explananda in these domains. Commitment to main hypotheses 
and a set of domains would thus explicate relevance and explain 
how data, analogy, and simplicity can have differing weights. 
Thagard observes (section 4.10) that such contextual features are 
learned from established coworkers in the field. The same 
sociopsychological peer pressure sets limits to tolerance and 
skepticism. 

Note, then, that a project is a gamble. Traditional decision­
making models acknowledge this through expected cognitive 
value. True, precise probabilities are not easy to come by, hut 
F.CH0 could add a dynamic feather to its hat hy allotting ex­
pected coherence a role, however modest. 

Let me conclude with a note on broader vistas. Thagard 
rejects the normative/descriptive dichotomy, yet (rightly) in­
sists on the cognitive nature of explanatory virtues (Thagard & 
Nowak 1988). But consider the legal examples, in which the 
prosecution and defense advocate incompatible ways of explain­
ing the evidence. Clearly, more than "hannany" or truth is at 
stake. A juror may think that "guilty of first-degree murder" 
maximizes "harm any," bnt he may think twice before speaking 
out. Thagard surmises that jurors hesitate because hypotheses 
of innocence receive special activation (or require a high toler­
ance level). 1 agree, and suggest a reason: apart from cognitive 
considerations, jurors may (without, perhaps, being aware of 
this) keep an eye on the practical consequences that follow if the 
J°udgc acts on a chosen cognitive verdict (as he usually must). 
The most "hannanions" option may have dramatic conse­
quences for the defendant, wbich is why the moral and legal 
principle of safeguarding the innocent exists. 1 suggest that this 
principle hrings in a noncognitivc constraint that should operate 
on what one says, not on what one thinks. Thaganl's examples 
suggest that being established "beyond reasonable doubt" runs 
these two aspects together. 



Psychology, or sociology of science? 

N. E. Wetherick 
Department of Psychology, University of Aberdeen, King's College, Ofd 
Aberdeen AB9 2UB, Scotland 

My problem with Thagard' s target article is that it purports to 
present a connectionist theory of "the aL'Ceptance and rejection 
of scientific hypotheses" as an individual psychological (or per­
haps neurophysiological) process, but cites only examples in­
volving the acceptance or rejection of hypotheses by a commu­
nity of scientists~a sociological process. It is not obvious to me 
that the same theory could apply to individual psychological 
processes as well as to sociological ones. 

Thagard' s examples come from the sociology of science. The 
phlogiston controversy seems to have been settled over what is a 
very short period if one considers the slowness of scientific 
communication at the time. It is natural to assume from ap­
pearances that something is lost by substances when they burn; 
smoke is given off, along with soot particles. But when a 
controlled experiment is done, it turns out that weight is gained 
by the burned substance exactly equivalent to the weight lost by 
the air in which it is burned. Something passes from the air to 
the substance, but phlogiston theory predicts the opposite. 
Though Lamarck, for example, and Goethe never ceased to 
advocate a "qualitative" science concerned with "the very 
nature" of things, the period Wds one in which the idea of a 
"quantitative" science was gaining ground prior to its triumph in 
the nineteenth century; that movement of thought was suffi­
cient to ensure a preference for theories consistent with the 
quantitative evidence. Ecno picks up this effect (in which 
variations between individual scientists in the perceived rele­
vance of different parts of the argument cancel out over the 
whole). 

The controversy over Darwin's argument for natural selection 
mirrors the psychological process more closely~creationists are 
still active among us, but not phlogiston theorists. If someone 
accepts that species were created by God because that is what he 
tells us in the Bible, then no amount of geological or biological 
evidence will oblige him to believe in natural selection! God 
may have incorporated evidence suggesting natural selection 
(over a period of millions of years) when he created the world in 
4004 B.C., just to test our faith in his word. This argument was 
seriously advanced in the nineteenth century, but in the nine­
teenth century there was also a movement of thought favouring 
arguments that did not depend on revelation but made a rational 
case for alternative naturalistic explanations of phenomena. 
ECHO picks up this effect too. 

Thagard' s examples evaluate hypotheses against evidence as 
if in a mind free of prejudice and preconceptions. No real 
individual mind qualifies, and I suspect that even the "mind" of 
the scientific community only appears to qualify because in the 
examples chosen the "true" hypothesis was the one consistent 
with a movement of thought that was, in any case, beginning to 
be accepted on much more general grounds. If Thagard mod­
elled the mind of the scientific community of the 1920s on the 
subject of Polanyi' s theory of the adsorption of gases on the 
surface of a solid, he would show that Polanyi was wrong, though 
in fact Polanyi was right. (Langmuir got the Nohel prize for 
being wrong!) At that time, the "movement of thought" was 
against the type of theory advocated by Polanyi (Polanyi 1963). 

Thagard may argue that ECHO can perfectly well model a 
prejudiced mind, and so it can, but I question the value of a 
conncctionist model of this particular type of mental activity. 
Perceived explanatory coherence is always determined by con­
scious symbolic processing, usually accompanied by discussion 
with other perceivers interested in the same prohlcm~which 
would be impossible without symbolic processes. This is recog­
nised in ECHO by the fact that the degree of relevance of 
evidence to hypotheses (and of analogy between hypotheses) 
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has to be input by higher (symbolic?) mental processes. When 
we as individuals consider alternative hypotheses as explana­
tions of a given set of phenomena, we may "err" (as shown 
above) because we attach exceptional weight to a particular 
hypothesis for reasons extraneous to science. Or we may be 
unaware of some piece of evidence that, we agree as soon as we 
hear of it, determines the issue in favour of one of the hypoth­
eses. Or we may temporarily have forgotten some such piece of 
evidence and be willing to change our opinion as soon as we are 
reminded of it. In any case, symbolic processing will be in­
volved, and Thagard' s model contains no hint as to how the 
transition to this is to be achieved; it C'dn account for no more 
than, for example, "incubation" in problem solving. 

I conclude that nothing is to be gained at present by con­
structing a connectionist account of a psychological process that 
must involve symbolic processes. Thagard's model could be an 
account of the sociological process by which a community of 
scientists comes to adopt a common view on some theoretical 
issue, but his references to "excitation" and "inhibition" would 
then be entirely metaphorical, and that does not seem to be 
what he intended. 

Testing ECHO on historical data 

Jan M. Zytkow-
Department of Computer Science, George Mason University, Fairfax, VA 
2203D-4444 
Electronic mall: zytkow@gmuvas.gmu.edu 

A number of interesting phenomena related to the choice 
between competing theories were reproduced in ECHO on toy 
problems in section 4 of Thagard's target article. This makes 
ECHO an interesting framework for further analysis. Such a 
limited validation is usually an easy first step for any framework, 
however. The four cases examined in sections 5 and 6 were 
selected by Thagard to play the role of much more substantial 
examples. How convincing are they? I will concentrate on the 
first one, representing Lavoisier's 1783 critique of phlogiston. I 
will argue that this example says little about how one of the 
competing theories is superseded by the other. Then I will 
discuss the possibility of better tests. 

EcHo applied to Lavoisier's arguments against phlogiston. 
Consider the oxygen/phlogiston example. Does ECHO answer 
why the oxygen theory of combustion superseded the phlo­
giston theory? I do not think so. Running on data that Thagard 
reconstructed from Lavoisier's 1783 paper (Lavoisier 1862), 
ECHO concludes that the phlogiston theory is less coherent than 
the oxygen theory. This supports Thagard's descriptive claim 
about ECHO by confirming Lavoisier's conclusion based on 
Lavoisier's data. However, in order to understand the shift from 
the phlogiston theory to the oxygen theory, it is not as important 
to understand why Lavoisier became convinced that the phlo­
giston theory is inferior as it is to understand why the phlogis­
tians gave up. To understand this, we must take the strongest, 
not the weakest, accounts of their theory. In the example 
considered by Thagard, Lavoisier criticizes some of the old 
phlogistic claims made prior to the discovery of oxygen. In the 
early 1780s, phlogiston theory, improved by Cavendish, Kir­
wan, and Priestley, could explain evidence E3, E4, E5, E6, and 
E7 in Thagard's Table I (Musgrave 1976, pp. 193-94: Part­
ington 1962, p. 255: Zytkow & Lcwenstam 1982, pp. 45-46), 
contrary to Lavoisier's claim. 

According to the improved phlogiston theory, duringcalcina­
tion the phlogiston disengages from metal, forming a compound 
with dephlogisticated air (oxygen). That compound in turn 
combines with the calx that remains from metal. This schema, 
extended to other substances, was able to explain the dccom-
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position of calx of mercury into mercury and oxygen, and solved 
the nagging anomaly of the increase in weight during calcina­
tion. 

In selecting Lavoisier s 1783 paper, Thagard considers a 
phlogiston theory no longer entertained by the leading phlogis­
tians-hencc it is not strange that they remained unconvinced by 
Lavoisier's criticism. So even if ECHO demonstrates the superi­
ority of Lavoisier's theory, the relevance of the example docs not 
go beyond a description of the particular reasoning of a particu­
lar scientist against a dead or imaginary opponent. It might have 
had an impact only on some outsiders in chemistry, as it has had 
on some historians. 

The input given to ECHO, listed in Tables 1 and 2, raises 
further doubt.<;. Why is OH4- "Oxygen has weight" - treated as 
a hypothesis in Table 1, not as evidence? Examining Table 2, 1 
do not see why some hypotheses are relevant, nor why some 
evidence is explained. For instance, why is El explained by 
hypotheses OHl, OH2, and OH3? Neither hypothesis tells 
anything about any substance being given off, so how can we 
conclude that heat and light are given off? I do not see why OHl 
is relevant to the explanation ofE3: Thagard treats his explana­
tory relation as an undefined primitive. Because similar doubts 
apply to most entries in Table 2 and to the input for the 
remaining three examples, they suggest a more explicit treat­
ment of explanation. Thagard himself mentions the input prepa­
ration problem in section 7. But his problem has been solved to a 
large extent elsewhere. The generation of hypotheses and ex­
planatory links ran be automated by a combination of two 
existing mmputer discovery systems, STAHL and GLAUBER, 
developed several years ago (Langley et al. 1983; 1987, Chap­
ters 6 and 7; Rose & Langley 1986; Zytkow & Simon 1986). 
Jointly, these systems can mnstrnct both the hypotheses in 
Table land explanations simclar to those in Table 2 by using the 
evidence in Table l as well as some additional observations. 
STAHL and GLAUBER have been tested on many historical 
episodes. Their simple and explicit operators allow for detailed 
examination of the explanatory process. 

Better tests for ECHO. Can ECHO describe the shift from the 
phlogistic view to Lavoisier's view? To test this problem we 
need cases of phlogistians, who, knowing both theories, decide 
in favor of Lavoisier. To pass the test, ECHO should be able not 
only to mimic this performance by selecting a stable state 
mrrespondingto the oxygen theory, but also demonstrate that a 
particular, historically valid input caused the shift from the 
previously held stable state corresponding to the phlogistic 
theory. Unfortunately, little is known about these episodes. If 
they were available, however, I would not expect them to 
confirm Thagard's conjecture about the descriptive capability of 
ECHO. Leading phlogistians conducted very incisive analyses of 
Lavoisier's claims and produced excellent aemunts of his theo­
ry, but they did not feel that their theories were less coherent 
(Cavendish 1785; Kirwan 1789). In my view, a plausible expla­
nation of the paradigm shift in chemistry at the end of eigh­
teenth century cannot be explained by abstracting from the 
mntents of both theories. 

From the descriptive po(Ilt of view, validating ECHO requires 
many historical episodes as data points. One can find many other 
candidates for test case.<; which are perhaps not as spectacular as 
the transition from the phlogiston theory to the oxygen theory, 
but which are much better documented. Leading theories of 
eighteenth-century chemistry underwent many changes follow­
ing the discovery of hydrogen, oxygen, decomposition of water, 
and so forth. Bera.use each discovery led to different responses 
by different ehem(sts as described in their writings, many test 
cases are readily available. 

Conclusions. ECHO provides an interesting, uniform, 
domain-independent mechanism for coherence testing. It is 
poorly supported, however, and the impact of this work is 
unclear. In each domain of application, ECHO should be tested 
on a number of carefully selected cases. In the domain of 
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eighteenth-century chemistry, ECHO may be coupled with 
STAHL and GLAUBER, because they arc able to generate most of 
ECtto's input. 

NOTE 
*On leave from Wichita Stale University aud the l1nivenily of 

Warsaw. 

Author's Response 

Extending explanatory coherence 

Paul Thagard 
Cognitive Science Laboratory, Princeton University, Princeton, NJ 08542 
Electronic mall: paull(d;confidence.princeton.edu 

The commentators have raised numerous important 
questions about my account of explanatory coherence. In 
reply, I will first address the most general issues about the 
kind of approach to understanding inference I have taken, 
answering queries about the philosophical, psychologi­
cal, and computational nature of this project and about 
the role that connectionist ideas play. I will then address 
theoretical questions about explanation, simplicity, anal­
ogy, probability, and conceptual change, and will subse­
quently look at problems concerning the ECHO model. 
(Adopting Reggi a' s acronym, I distinguish between TEC, 

the theory of explanatory coherence expressed in the 
seven principles in section 2.2 of the target article, and 
ECHO, the computational implementation of those princi­
ples.) Finally, I will discuss problems pertaining to the 
adequacy of TEC and ECHO for characterizing human 
thinking. 

1. The general approach 

1.1. Philosophy, psychology, and artificial intelligence. 
TEc and ECHO are intended simultaneously to contribute 
to philosophy of science, cognitive psychology, and ar­
tificial intelligence (AI). Dietrich seems puzzled about 
whether TEC is a theory in the philosophy of science or a 
psychological theory. My intention is for it to be both, and 
I acknowledge the possibility that it could fail to be 
adequate in both respects. That he sees a tension be­
tween these two interpretations is not surprising given 
the logical positivist tradition in the philosophy of science 
that tried to separate logic from psychology. But postposi­
tivist philosophy of science should be psychologistic, not 
in the strong sense that supposes that however scientists 
think is rational, but in the weak sense that judgments of 
rationality take actual thought processes as their starting 
points. The investigation of those processes then be­
comes part of the philosophy of science. The best current 
method for psychological theorizing comes from com­
putational modeling. From this perspective, philosophy 
becomes part of cognitive sdence; it should not seem odd 
to find a computer program described as part of a theory 
in the philosophy of science. The point of ECHO is to show 
that a much more detailed and applicable account can be 
provided of explanatory coherence and theory evaluation 
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L The general approach 
LL Philosophy, psychology, and artificial intelligence 

Dietrich, Wctherick 
L2. Connectionism 

Dietrich, Lycan, Cheng & Keane, Wctherkk, Giere, 
Levine 

2. Theoretical issues 
2.L Explanation and hypothesis evaluation 

Achinstein, O'Rorke, Sintoncn, Josephson 
2.2. Simplicity 

Rcggia 
2.3. Aualogy 

McCauley, Gahrys & Lcsgold, Hobbs 
2.4. Conceptual change 

Giere, Mangan & Palmer 
2.5. Logic and probability 

Feldman, Cohen, Papineau, Lycan, Dawes, Bereitcr 
& Scardamalia 

3. Problems with the ECHO model 
McCauley, Mangan & Palmer, Dietrich, Zytkow, McDer­

mott, Hobhs, Bereiter & Scardamalia, Simou, Zytkow 
4. Psychological adequacy 

Klayman & Hogarth, Earle, Cheng & Keane, Chi, 
Bereiter & Scardamalia, Read & Miller 

Note: The commentaries discussed in each category are listed 
in order of appearance. 

than philosophers have given so far. Computational phi­
losophy of science (Thagard 1988a) fits within the center 
of the interdisciplinary field of cognitive science, at­
tempting an integrated assault on problems common to 
philosophy, psychology, and AI. Dietrich's suggestion 
that ECHO is in the logical positivist tradition ignores the 
fact that TEC and ECHO are neither logical (in the narrow 
sense) nor positivist. They are not positivist because the 
emphasis is on high-level theories, not on observation, 
and data can be rejected; and the principles of explanato­
ry coherence go well beyond formal logic. 

Perhaps it would be useful to coin a new term to 
describe an approach that is intended to be both descrip­
tive and prescriptive. I shall say that a model is biscriptive 
if it describes how people make inferences in accord with 
the best practices compatible with their cognitive capaci­
ties. Unlike a purely prescriptive approach, a biscriptive 
approach does not offer a theory of God's cognitive 
performance, but is intimately related to actual human 
performance. Unlike a purely descriptive approach, 
biscriptive models can be used to criticize and improve 
human performance. 

Whereas my project is intended to be philosophical, 
psychological, and computational, Wetherick sees TEC 

and ECHO as sociological on the grounds that my examples 
involve acceptance or rejection by a community of scien­
tists. I was explicitly modeling Lavoisier and Darwin, 
however, not communities of chemists or biologists. My 
examples come from the history of science, not its so­
ciology. Nor do I pretend to model minds free of preju­
dice and preconceptions. As described in section 10.4 of 
the target article, ECHO does display a degree of conser-
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vatism in how it deals with new evidence, and other sorts 
of preconceptions could be modeled using the mecha­
nisms for analogy. Wetherick simply asserts that explana­
tory coherence is always determined by conscious sym­
bolic processing, bot people often appreciate the co­
herence of a new point of view only after they have 
stopped consciously arguing about it. 

1.2. Connectionism. The computational side of my ac­
count of explanatory coherence draws heavily on connec­
tionist ideas. Yet Dietrich and others see ECHO as almost 
peripheral to the theory, TEC. There are two responses to 
this, one biographical and the other methodological. 
Although the organization of the target article suggests 
that TEC came first and ECHO followed, I in fact got the 
idea for ECHO by analogy with the ACME program for 
analogical mapping that Keith Holyoak and I were devel­
oping (Holyoak &Thagard, in press). Thinking in terms of 
connectionist algorithms for simultaneously satisfying 
multiple constraints had enabled us to reconceptualize 
the problem of how the components of two analogs can be 
put in correspondence with each other, and it struck me 
that a similar approach might work for the problem of 
hypothesis evaluation. General ideas about inference to 
the best explanation and parallel constraint satisfaction 
led to ECHO, which led to TEC, and ECHO and TEC 

thereafter evolved together. As usual in cognitive sci­
ence, there was considerable interplay of theory and 
model, with ideas about how to improve ECHO suggesting 
improvements in TEC and vice versa. The connectionist 
model thus played a crucial role in theory development, 
but it has also been instrumental in evaluating the theory. 
A typical theory in the philosophy of science is defended 
with a brief discussion of a couple of examples. ECHO 
makes possible and necessary the development of very 
detailed simulations that simultaneously lend credence to 
claims about the scope of ECHO and the scope of TEC. I 
therefore see connectionist ideas about parallel constraint 
satisfaction as integral to both the generation and the 
evaluation of a theory of explanatory coherence. 

Lycan claims that my emphasis on connectionism is 
misleading, for he seems to consider distributed repre­
sentations and neurological aspirations central to connec­
tionism. Yet the more careful connectionists have made it 
clear that the similarity between the brain and current 
connectionist models, including distributed ones, is su­
perficial at best. Rather than viewing connectionism as a 
new "paradigm" that obviates traditional AI, I see con­
nectionist ideas as a very useful supplement to traditional 
ideas in AI. A convincing argument for the redundancy of 
the connectionist approach would require the develop­
ment and general application of a nonconnectionist ver­
sion of ECHO. I have produced the rule-based version of 
ECHO described in section 7 of the target article, and it has 
the conjectured limitations. Although it duplicates 
ECHo' s performance in quite a few cases, there are 
numerous other cases where it lacks ECHO's subtlety and 
generates different, less appropriate, conclusions. 

I agree with Cheng & Keane about the importance of 
developing a psychological account of explanation, but I 
want to challenge their dichotomy between "conven­
tional symbolic" models and connectionist ones. Wether­
ick also erroneously contrasts my account of explanatory 
coherence with symbolic approaches. Both proponents 
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and critics of connectionism have exaggerated the dif­
ference between connectionist and traditional ap­
proaches. For one thing, even connectionist models with 
distributed representations have a substantial symbolic 
component involved in their inputs and outputs. Both in 
this work on explanatory coherence and in research on 
analogy (Holyoak & Thagard, in press), I favor a hybrid 
approach in which symbolic reasoning is used to create a 
network and connectionist algorithms are used to do 
parallel constraint satisfaction. There is nothing "subsym­
bolic" about this approach at all. I also like the way that 
distributed representations work, but doubt that the 
symbolic/subsymbolic distinction is useful there either. 
What is needed in cognitive science today is work that 
integrates many different approaches. 

Whereas several commentators have upbraided me for 
being too connectionist, other readers will undoubtedly 
think that I have not been connectionist enough, relying 
too heavily on symbolic input and not using distributed 
representations. I have no doubt that the understanding 
of cognitive processes will require the nonlinguistic rep­
resentational mechanisms and judgmental strategies that 
Giere advocates. I conjecture, however, that explanation 
and theory evaluation are heavily influenced by our 
ability to use language, so that linguistic representations 
of varying degrees of complexity will be central to under­
standing the highly verbal practices of scientists. 

Levine is of course right that nothing in the ECHO 

model addresses the question ofhow to modify a theory or 
to synthesize parts of two conflicting theories. These are 
important issues for future research. I also very much like 
his challenge to connectionist and neural theories to 
indicate how higher-order processes of explanation and 
coherence might emerge from lower-order processes. 
Some extreme proponents of the neurophysiological ap­
proach might be tempted to argue that the coherence 
relations I discuss are mere epiphenomena and will prove 
superfluous once neuroscience really gets rolling. I think 
such proponents are roughly in the position of a fifteenth­
century scientist trying to practice molecular biology 
before much was known about whole organisms. My 
recommended strategy for cognitive science is to have 
many people working simultaneously at many levels, 
with researchers at each level keeping appreciative eyes 
open for relevant work at the other levels. Section 8.1 of 
the target article listed eight different approaches, all of 
which I think are worth pursuing. My conJ·ecture is that 
one of the major sources of scientific progress in the near 
future will come from the interpenetration of approaches 
~ for example between neuroscience and experimental 
cognitive psychology, and between connectionist models 
and traditional Al models. Fortunately, this seems to be 
exactly what is happening, despite the jeremiads of some 
researchers who insist that only their favorite approach is 
worthwhile. 

2. Theoretical issues 

2.1. Explanation and hypothesis evaluation. Now let us 
tum to issues central to TEC, the theory of explanatory 
coherence. Achinstein contends that I need to show some 
intrinsic connection between explanation and accept­
ability. He suggests that I would not want to say that the 
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Book of Genesis explains the origin of the universe, in a 
sense of "explains" that has any connection with accept­
ability. On the contrary, I see no difficulty in saying that 
Genesis explains the origin of the universe and would 
even allow that there was a time when it (and equivalent 
theological views) provided the best available explanation 
of the universe. The reason that the Genesis account is no 
longer acceptable is that we have accumulated masses of 
data about the development of the universe that are 
explained much more comprehensively and simply by 
new theories such as the Big Bang theory. We would 
need a connection between explanation and acceptability 
only if we were arguing directly from "H explains the 
evidence" to "H is acceptable," but no one advocates 
that. Instead, we ought to make sure that before H is 
accepted we have sought alternative explanatory hypoth­
eses and done a comparative explanation. The inference 
from "His the best explanation of the evidence" to "His 
acceptable" does not require any special relation between 
explanation and acceptability. The use of inference to the 
best explanation can be justified on the basis of my 
methodology for going from the descriptive to the nor­
mative (Thagard 1988a, Chap. 8). 

I have regrettably not offered a theory of explanation, 
but I do see glimmers of what such a theory might look 
like. It would not resemble the attempts by philosophers 
to give an analysis of the concept of explanation, that is, to 
give a set of necessary and sufficient conditions for some­
thing being an explanation. Concepts in science and 
ordinary life are rarely susceptible to such definitions. At 
best, we can hope to describe features characteristic of 
typical explanations. Although not all explanations are 
deductive, many are at least quasideductive in that they 
place what is to be explained in the context of general 
laws, doing at least a rough derivation. Many are causal, 
in that they invoke causal mechanisms as part of the 
derivation of what is to be explained. Many are oriented 
toward answering particular questions that have been 
posed. Many involve fitting schemas to a situation to 
generate a contextual understanding of events. A theory 
of explanation should integrate these quasideductive, 
causal, question-oriented, and schematic components to 
account for the explanatory practices of scientists. The 
theory would be computational in that it would be precise 
enough to be implemented in a computer program, hut it 
would be clearly distinguished from the program that 
implements it. Finally, the theory of explanation would 
make contact with experimental studies of how people 
generate and use explanations. A cognitive theory of 
explanation would be a substantial contribution to philos­
ophy, psychology, and Al. 

O'Rorke accurately characterizes aspects of the scien­
tific reasoning process that TEC and ECHO do not address. 
He suggests that it is necessary to introduce evaluation 
into the construction process in order to reduce the 
number of explanations generated. Implicitly, this is true 
of the abduction mechanism in the system PI ("Process of 
Induction," Thagard 1988a, Chap. 4), because a hypoth­
esis has to explain at least one fact for it to be generated. It 
will be interesting to see what other constraints are 
embodied in O'Rorke's programs and to try to integrate 
explanatory coherence considerations with programs that 
make decisions about when to collect more information. 
O'Rorke also suggests that an agent's goals and priorities 



play important roles in evaluation. Now I can certainly 
see the relevance of goals and priorities for the generation 
of hypotheses. Holland et al. (1986) emphasized that 
induction should be constrained by problem-solving con­
texts. But the question of whether to accept a hypothesis 
is separable from the question of where to focus attention 
and the decisions that may be based on the hypothesis 
once it is accepted. Eventually I plan to develop a 
modified version of ECHO, MOTIV-ECHO, that is capable of 
conflating hypothesis evaluation and decision making, 
which is also naturally understood to be a parallel 
constraint-satisfaction process. Motivated ECHO will 
reach conclusions on the basis of how well beliefs satisfy 
its goals, as well as on the basis of how much explanatory 
coherence they have (cf. Kunda 1987; Thagard & Kunda 
1987). But Kunda's data, although they support the view 
that people make motivated inferences, also suggest that 
the way this works is much more subtle than merely 
believing what one wants to believe. Motivation affects 
memory search for evidence that is then selectively 
applied in support of desired conclusions. People do not 
just believe what they want, although they attempt to find 
evidence for what they want to believe. 

Sintonen raises the important question of whether 
ECHO can deal with promise, suggesting that scientists 
adopt a theory in part because they think it has the 
potential for growth. Undoubtedly this occurs. I am sure 
that the reason so many graduate students are working on 
connectionist models, in some cases to the chagrin of 
their supervisors, is partly that there are many open 
questions to be investigated; in contrast, many tech­
niques that have been very important for AI, such as rule­
based systems, have already been well explored. I think, 
however, that we can distinguish the decision to work on 
a project from the judgment, based on explanatory co­
herence, that the theory underlying the project is the 
best one available. The category of "promise" blurs into 
wishful thinking, opening up the possibility that scientists 
believe a theory because it has the potential to make them 
successful rather than because of its coherence. MOTIV­
ECHO might model such inferences. Similarly, Sintonen 
suggests that jurors take into account the consequences of 
their decisions for the punishment of the accused, not just 
the explanatory coherence of tht' ·competing accounts. 
For scientists, however, I think it is more common to 
reverse this inference and think that a theory will make 
them successful because of its explanatory coherence. 
Sintonen is not suggesting that ECHO be broadened to a 
fully motivated ECHO, only that a component of "ex­
pected coherence" be added. If there were some reason­
able way to assess the expectation, this might be appro­
priate, but I do not see any natural way to add this 
constraint. 

Sintonen has a legitimate concern about the identity 
criteria of theories and suggests that I distinguish more 
carefully between core hypotheses and auxiliary hypoth­
eses. I would prefer to have that distinction emerge from 
the model: Core hypotheses have many explanatory con­
nections to evidence and other hypotheses, whereas the 
auxiliary hypotheses are very sparsely connected. I grant 
Sintonen's claim that theories have some autonomy in 
selecting the territories they claim, but I believe that 
once two theories have territories that overlap, each of 
them should pay attention to the territory of the other. 
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That does not mean that the best explanation has to 
explain everything the other theory does, only that it 
normally tries. The system PI incorporates an algorithm 
for accumulating alternative hypotheses and relevant 
evidence (Thagard 1988a, p. 207). 

Josephson challenges TEc's assumption, derived from 
Harman (1973), that a hypothesis becomes more accept­
able if it is explained by a higher-level hypothesis. Yet in 
every domain in which explanatory inference is used, 
higher-level explanations can add to the acceptability of a 
hypothesis. Darwin, for example, thought that the fact 
that evolution was explained by natural selection was a 
crucial part of the evidence for evolution. In murder 
trials, questions of motive play a major role, because we 
naturally want an explanation of why the suspect commit­
ted the crime as well as evidence that is explained by the 
hypothesis that the suspect did it. In Josephson's own 
favorite domain, medical diagnosis, I expect that doctors 
normally find the hypothesis that cirrhosis of the liver is 
the cause of a patient's symptoms more convincing if they 
can also explain why the patient got cirrhosis from being a 
heavy drinker. ECHO shows that incorporating this ele­
ment of explanatory coherence into a computational 
model does not create any intractable problems. Unlike 
Harman, however, I do not subsume enumerative induc­
tion under inference to the best explanation, but treat it 
as an independent form of inference (Holland et al. 1986, 
Chap. 8; Thagard 1988a). Contrary to Josephson's sug­
gestions, nothing in TEC involves a position on the philo­
sophical question of the symmetry of explanation and 
prediction. 

2.2.Simpllcity. The important parsimonious covering the­
ory suggested by Reggia provides a serious alternative to 
TEC, although TEC's notion of simplicity is not as simple as 
Reggia suggests. He interprets TEc's Principle 2(c) (sec­
tion 2. 2) as a principle of minimal cardinality: Explanatory 
hypotheses with the smallest number of hypothesized 
components are preferable. But 2(c) does not have this 
consequence. Consider a theory, Tl, consisting of three 
hypotheses, Hl, H2, andH3. The alternative theory, T2, 
consists of H4, HS, H6, and H7, where Bl and H4 are 
contradictory. Now suppose that there are two pieces of 
evidence, El and E2, and that Bl and H2explain El, and 
Bl and H3 explain E2. On the competing side, suppose 
that H4 explains El, and H4, HS, and H6 explain E2, and 
moreover that H7 explains H4, HS, and H6. When ECHO 
is run on this example, the hypotheses in T2 are all 
accepted and H 1 is rejected, even though T2 has more 
hypotheses than Tl. An unlimited number of similar 
examples would show that what matters is not just the 
sheer number of hypotheses but also their configuration. 
That being said, I have much sympathy for Reggia's 
general approach, and would be ready to use Bayesian 
methods when frequencies and prior probabilities are 
available. In the examples to which ECHO has been 
applied, they generally are not. The closest one could 
come is perhaps to use analogies to indicate prior plau­
sibilities, favoring hypotheses that figure in explanations 
that are similar to ones already used. In the medical and 
engineering domains where Reggia' s theory has been 
successful, probabilities based on frequencies are more 
obtainable and sensible than in the wide-open scientific 
and legal domains to which ECHO has been applied. 
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2.3. Analogy. Principle 3 of TEC is challenged by Mc­
Cauley on the grounds that theories cannot be evaluated 
on the basis of analogies, because what counts as an 
analogy is partly determined by theory. Although grant­
ing that theories influence analogies, I think that the 
process of analogy recognition is sufficiently independent 
of theorizing to leave Principle 3 intact. Our theory of 
analogical mapping (Holyoak & Thagard, in press) shows 
how structural, semantic, and pragmatic constraints af­
fect how the components of two analogs can be placed in 
correspondence with each other. Defenders of different 
theories may well have different goals in the use of an 
analogy, and this will affect their use of the analogy; our 
theory accommodates this in its admission of a pragmatic 
constraint. But that is only one constraint among many, 
and if the structural (syntactic) and semantic (meaning­
related) aspects of the two analogs are similar, as I think 
they usually are, then proponents of different views can 
reach some agreement about the nature of the analogy. 
McCauley is of course right that the analogy between 
artificial and natural selection did not in itself move the 
nineteenth-century creationist, but it was only one com­
ponent of the whole picture. Darwin had to argue that 
species were more like breeds than creationists had 
allowed, and this was very controversial. But creationists 
could nevertheless appreciate the structure of the analo­
gy that said that having nature select and produce species 
was something like having breeders select and produce 
breeds. Similarly, although I have challenged the general 
usefulness of the analogy between biological evolution 
and the growth of scientific knowledge (Thagard 1988a, 
Chap. 6), I have no difficulty in seeing the relations that 
constitute the analogy. 

Gabrys & Lesgold rightly point out that jury reasoning, 
such as in the cases modeled by ECHO, is very different 
from jurisprudential reasoning, in which J·udges and law­
yers apply the law. I am in complete agreement that case­
based (analogical) reasoning is important in law, but I do 
not understand why these commentators view this as 
being incompatible with constraint-satisfaction models. If 
our account is correct (Holyoak & Thagard, in press), then 
analogical reasoning, which subsumes case-based reason­
ing restricted to a single domain, is very much a matter of 
simultaneous satisfaction of structural, semantic, and 
pragmatic constraints. Just as ECHO uses connectionist 
algorithms to integrate various considerations for evaluat­
ing hypotheses, the analogy program ACME uses such 
algorithms to integrate constraints about how analogs can 
be put into correspondence with each other. ACME is of 
course different from ECHO in the way it constructs 
constraint networks, but it is similar in the way it uses 
relaxation techniques to calculate how to satisfy con­
straints. 

Hobbs argues that the existence of an analogy enhances 
a theory's explanatory power only when it rests on a 
deeper abstract principle. Similarly, some Al researchers 
have claimed that analogies always involve some kind of 
abstraction. In the view of Holyoak and Thagard (in 
press), however, analogies can be recognized indepen­
dent of such abstract principles; in fact, it is often the 
recognition of the analogy that prompts the formation of 
the abstract principle. Once the relevance of analogies AI 
and A2 has been noticed, it becomes possible to abstract 
from them a schema that incorporates the relevant fea-
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lures of both (Holland et al. 1986, Chap. IO). lu the 
Daiwin case, for example, I suspect that the abstraction 
"Selection can result in new varieties of living beings" 
came about only after Daiwin's theory and the analogy he 
had cited were accepted. So analogy remains indepen­
dent of simplicity and consiliencc (explanatory breadth). 

2.4. Conceptual change. TEC is intended to play a role in 
accounting for conceptual change in science. But Giere 
contends that I have given a model of scientists' argu­
ments, not of their reasoning. To be sure, my historical 
cases are hased on published arguments, not on protocols 
collected from scientists in the heat of reasoning. In 
contrast, Ranney and Thagard (1988) report ECHO 
analyses based on subjects' verbal reports of the stages of 
their reasoning. Whether similar techniques could he 
used with practicing scientists to generate evidence con­
cerning scientists' use of ECHO-style considerations is an 
open empirical question. I hope the experiments are 
done with practicing scientists. I like the fact that what 
might appear to be a philosophical disagreement between 
Giere and me about the applicability ofTEC is amenable 
to empirical investigation. 

Giere questions whether TEC can explain the transition 
from the phlogiston to the oxygen theory, because we 
would expect proponents of the earlier theory simply to 
mount their own explanations. This is undoubtedly what 
happens initially, but in the course of argument scientists 
start to understand the evidence and explanatory rela­
tions of their opponents, so that they acquire an enhanced 
picture of the explanatory relations. Over time (it typ­
ically took a couple of years in the chemical revolution), 
the expanded explanatory network can lead to the adop­
tion of the new theory. I therefore do not want to retreat 
to the purely normative stance that Giere suggests. I have 
no objection to Giere's proposal that we look at the full 
range of representational mefhanisms and judgmental 
strategies that operate in individual cognitive agents, but 
I contend that psychological experiments may show ex­
planatory coherence considerations to be paramount. 
TEc is thus intended to be much more psychological and 
no less normative than inductive logics. 

Mangan & Palmer find the philosophy of science 
implicit in TEC insufficiently up to date, assailing its 
Kantian flavor in contrast to the more relativist views of 
Kuhn and Feyerabend. But the principles ofTEC arc not 
claimed to be synthetic a priori like Kant's fundamental 
principles. Elsewhere (Thagard 1988a, Chap. 7) I offer an 
account of how to develop normative principles from 
descriptive considerations; I would want that account to 
apply to TEC as well. The main support for TEC comes 
from its application to numerous cases in the history of 
science, not from some a priori deduction. Meth­
odological theories have to cohere with inferential prac­
tice, although they can do this in part by invoking psycho­
logical and sociological background knowledge to explain 
deviations from the principles. Kuhn and Feyerabend 
overestimate, I would argue, the degree of variability of 
methodological principles in the history of science. 

The real issue between TEC and the Kuhn/Feyerabend 
view of scientific change concerns the degree to which 
principles of explanatory coherence change as part of 
"paradigm shifts." Mangan & Palmer's uncritical accep­
tance of Kuhnian dogmas presupposes that Kuhn got the 



history of science right, successfully using it to refute his 
positivist predecessors. But in many respects, Kuhn's 
description of the nature and magnitude of scientific 
change is not historically accurate (Donovan et al. 1988; 
Thagard, in press b). TEc would indeed he historically 
inadequate if it turned out that the shift from one major 
theory to another introduced new principles of explanato­
ry coherence and rejected old ones, but the extent to 
which this has occurred has been exaggerated. To take 
one example, Mangan & Palmer attribute to me the view 
that the use of analogy "became" an important explanato­
ry device for Darwin. But Darwin certainly did not 
originate it. In fact, we find analogy prominent in the 
writings (much admired by Darwin) of William Paley, one 
of the leading scientific creationists. Analogy also figured 
in arguments used for the wave theory of light hy Huy­
gens and Fresnel. So it was not the case that one aspect of 
the Darwinian revolution was the introduction of a new 
principle of explanatory coherence. 

Although I reject for philosophical and historical rea­
sons the drift of Mangan & Palmer's approach, I am 
intrigued by the architecture they propose for using 
gating units to modify the impact of explanations and 
analogies. I hope they will explore the kind of structure 
they describe for adjusting the impact of explanation, 
simplicity, and analogy, possibly learning it from feed­
back. I would argue, however, that understanding the 
major kinds of conceptual change that take place in 
scientific revolutions should pay more attention toques­
tions of conceptual structure (Thagard, in press b; 
Thagard & Nowak, in press) than to questions of change in 
principles of explanatory coherence. 

2.5. Logic and probablllty. Several commentators t'Om­
pare ECHO unfavorably with probability theory. Feldman 
expresses regret that more attention was not paid to 
foundational questions. He contrasts my theory of ex­
planatory coherence with logic and probability theory, 
each of which is said to have a relatively clean and well­
understood formal semantics. He wants a similar in­
terpretation for the weights and activity levels in ECHO. 

My guess is that such a semantic foundation for explanato­
ry coherence is going to he very difficult to find. In fact, 
logic and probability theory do not have much of a 
foundation either. The appearance that they have a clear­
ly understood semantics dissipates when one looks close­
ly at basic cases. Consider logic in its best understood 
form, first-order predicate calculus, whose Tarskian for­
mal semantics consists of giving a recursive truth defini­
tion for progressively more complex formulas. The sim­
plest formulas are atomic propositions such as "Fa," 
which is semantically interpreted as saying that the object 
that provides the interpretation of the constant "a" is in 
the set of objects that provides the interpretation of the 
predicate "F." But this account begs a host of founda­
tional questions, particularly what makes a set the in­
terpretation of "F." Surely it is the meaning of "F" that 
determines what objects fall under it, so that the Tarskian 
interpretation dodges the central semantic question. The 
situation gets even worse when one moves beyond first­
order logic to consider modal notions that are crucial for 
understanding scientific discourse. Matters of causality 
and explanation require conditionals (if-then statements) 
that go well beyond those found in standard logics, for 
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example, to permit semantic evaluation of counterfactual 
conditionals such as "If Bush had not been elected Presi­
dent, then the economy would he stronger." Formal 
semantics for such conditionals generally use the notion 
of possible worlds, which are far from being "clean and 
well understood." 

Similarly, how can one say that probability theory has a 
clean, formal semantics when philosophical debates 
about the interpretation of probability still rage? Cohen 
(1977), for example, rejects some of the standard axioms 
of probability theory [see Cohen "Can Human Irra­
tionality be Experimentally Demonstrated?" BBS 4(3) 
1981.], and even philosophers who accept the axioms 
debate whether probabilities should be interpreted as 
frequencies, propensities, or subjective degrees of belief. 
The apparent superiority of logic and probability theory 
derives more from their familiar syntax than from any 
foundational advantage. 

Cohen raises two substantial challenges to my account 
of explanatory coherence. The first is based on the intui­
tion that a hypothesis that is used to predict a piece of 
evidence gains more confirmation from it than does a 
hypothesis that explains it after the fact. I have argued 
previously that the apparent importance of prediction is 
really a matter of simplicity, in the sense used in TEC: 

I contend that the major reason why prediction of new 
phenomena appears so important is that such predic­
tions are likely to be a sign of simple explanations. In 
making a prediction, one does not have the opportunity 
to adjust the theory to an already-known outcome by 
means of auxiliary hypotheses. Using only the theory 
and already familiar auxiliary assumptions, a future 
outcome is predicted with no opportunity for adjust­
ments that are local to the prediction. In contrast, 
explanation after the fact can make many special as­
sumptions to derive the outcome from the theory ... 
Successful predictions are to be valued as signs of the 
simplicity of a theory, showing that its explanations do 
not require post hoc additions. (Thagard 1988a, pp. 
84-85) 

If this account is right, then TEC does not need any ad hoc 
additions to account for people's preference for hypoth­
eses that make predictions. The account could be chal­
lenged, however, by providing evidence from the history 
of science or controlled psychological experiments that 
display people preferring hypotheses that make predic­
tions over ones that provide post hoc explanations with 
the same number of auxiliary assumptions. 

Cohen's second point is that neither TEC nor ECHO 

provides a way to determine the acceptability of a con­
junction based on the acceptability of the conjuncts. This 
would he a grave problem if TEC were intended to be a 
general theory of inference, but it is not. As I stated in the 
target article (section 10.4), I view inference to explanato­
ry hypotheses as only one of a battery of inferential 
mechanisms. We still lack a general theory of how to 
combine explanatory inferences with deduction, gener­
alization, specialization, analogy, and statistical reason­
ing. Both Bayesian and Baconian analyses seem to me to 
lack the requisite generality. I therefore view the prob­
lem of the acceptability of conjunctions as unsolved and 
beyond the scope of TEC. As I pointed out in the target 
article (section 10.2), however, the problem in real cases 
is not solved hy probability theory either, because cal-
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culating the probability of a conjunction requires know­
ing the degree of dependence of the conjuncts, which is 
often indeterminate. 

Papineau challenges my arguments against probability 
theory largely on the grounds that people can learn to 
reason better probabilistically. I agree with his general 
point and would encourage every effort to improve proba­
bilistic reasoning. Psychologists, who originally reached 
very pessimistic conclusions about people's ability to 
reason statistically, have more recently been investigat­
ing how to teach the use of inferential rules (Holland et al. 
1986, Chap. 9). My view, from what Lycan correctly 
labels a "weak explanationisf' perspective, is that we do 
not make all our inferences on the grounds of explanatory 
coherence but that we should exploit probablistic knowl­
edge whenever it is available. Nothing that Papineau 
says, however, overcomes my basic point, which is that 
such knowledge is rarely available in the qualitative 
evaluation of scientific theories. My recommendation is 
to use statistical inference and probabilistic reasoning 
whenever possible, but not to pretend it is always possi­
ble. There is no reason to accept Papineau's prohibition of 
computational models of processes that can be trans­
formed by normative reflection. Understanding through 
use of such models how these processes might work can 
be an important part of bringing about the transforma­
tion. Contrary to the suggestion of Dawes, I do not follow 
Cohen in supposing that what people actually do is 
normatively correct; the real is not always rational. I like 
Bereiter & Scardamalia's suggestions about teaching 
people to make better judgments of explanatory co­
herence; I doubt that probability theory will be of much 
help there, however useful it is for other sorts of 
problems. 

The major challenge laid down in Dawes's commentary 
is to show that ECHO can deal with Simpson's paradox. 
This paradox arises when a hypothesis, Hl, gains accept­
ability from one piece of evidence, El, and also from 
another pieces of evidence, E2, but becomes less accept­
able given the conjunction of El and E2. TEC and ECHO 
can handle this naturally if El and E2 together support 
some alternative hypothesis that affects the acceptability 
of H 1. Here is an example that I think is clearer than the 
ones Dawes presents: Suppose that Mike is charged with 
committing a murder in New York. The acceptability of 
the hypothesis that Mike is innocent is increased by the 
piece of evidence that his friend Sam says Mike was in 
Philadelphia at the time of the murder. Taken alone, the 
acceptability of the innocence view would also be en­
hanced by the evidence that another friend, Fred, says 
that Mike was in Boston at the crucial time; but we find 
Mike's innocence less plausible if Sam and Fred both 
furnish incompatible alihis. All this is naturally under­
stood in terms of explanatory coherence, as shown by the 
input for ECHO listed in Tables 2 and 3. When ECHO is 
provided simply with Sam's testimony, which is ex­
plained by the hypothesis that Mike really was in Phila­
delphia, then the hypothesis that Mike is guilty is defeat­
ed. But in the more complicated case where there are 
contradictory alibis, the hypothesis that Mike is guilty is 
accepted, so the claim that he is innocent is rejected. I 
conjecture that other cases of Simpson's paradox can 
similarly be dealt with by attending to the full complexity 
of the networks of competing explanatory hypotheses 

496 BEHAVIORAL AND BRAIN SCIENCES (1989) 123 

Table 2. Input to ECllO for Mike's simple alibi 

(proposition ·co 
(proposition 'GI 
(proposition 'II 

"Mike committed the murder in New York.") 
.. Sam is lying to protect Mike.") 
"Mike was in Philadelphia.") 

(proposition 'EI "Sam says that Mike was in Philadelphia.") 

(explain "(GO) 'GI) 
(explain '(GI) "EI) 
(explain '(II) "EI) 

(contradict 'GO "II) 
(contradict 'GI "II) 

(data "(EI)) 

involved in the cases. In Dawes's case of the drunk in the 
bar, we can explain his being drunk before the crime as an 
attempt to get his courage up to commit the murder, and 
we can explain his heing drunk after the crime as an 
attempt to overcome the stress of committing the crime, 
but the best explanation of his being in the bar hoth 
before and after the crime is that he spent the whole time 
in the bar drinking. 

3. Problems with the ECHO model 

An important question about the arbitrariness of the 
inputs to ECHO is raised by McCauley. He is skeptical 
about how much agreement might he found between 
disputants about what constitutes an explanation and 
what constitutes an analogy. Skepticism would certainly 
be warranted if the Kuhnian view, defended by Mangan 
& Palmer, were correct. We would then expect what 
counts as an explanation or analogy to vary considerably 
from scientist to scientist; but I think this possibility is 

Table 3. Input to ECllO for Mike's contradictory alibis 

(proposition 'GO "Mike committed the murder in New York.") 
(proposition 'GI "Sam is lying to protect Mike.") 
(proposition 'G2 "Fred is lying to protect Mike.") 
(proposition 'II "Mike was in Philadelphia.") 
(proposition '12 "Mike was in Boston.") 

(proposition 'EI "Sam says that Mike was in Philadelphia.") 
(proposition 'E2 "Fred says that Mike was in Boston.") 

(explain '(GO) "GI) 
(explain '(GO) 'G2) 
(explain "(GI) 'EI) 
(explain '(G2) 'E2) 
(explain '(II) 'EI) 
(explain '(12) "E2) 

(contradict 'II '12) 
(contradict 'GO 'II) 
(contradict ·co '12) 
(contradict 'GI "II) 
(contradict 'G2 '12) 

(data "(EI E2 )) 



exaggerated. I am surprised that Dietrich had difficulty 
distinguishing between hypotheses and evidence in the 
case of Poincare's explanation of the Eureka Phe­
nomenon. My collaborators and I have found the distinc­
tion unproblematic. A proposition is evidence if it de­
scribes the result of observation or experimentation. 
Hypotheses, in contrast, explain such results or other 
hypotheses. Zytkow asks why OH4, "Oxygen has 
weight," is treated as a hypothesis, not as evidence. This 
was obviously a hypothesis for Lavoisier, because oxygen 
as such is not observable. The explanatory connection in 
Table 1 of the target article between the hypotheses 
OHl, OH2, and OH3 and the evidence El is there 
because of the background assumption that it was the heat 
and light from the oxygen that was produced by the 
reaction. The explanation here is not at the level of a 
deductive derivation, but at the level of the discourse at 
which scientists normally operate. 

McDermott sees as central to my model of explanatory 
coherence the minimizing of the energy function H 
defined by equation (1) in section 4.9. Perhaps he was 
misled by my assertion that ECHO stands for "Explanatory 
Coherence by Harmany Optimization," which was only 
an attempt to combine a catchy name with a pun. The H 

~ function strikes me as peripheral to the whole model, 
whose main function is to show how explanatory hypoth­
eses can be evaluated in complex ways. The reason for 
taking the connectionist route is simply that networks 
provide a very useful way of simultaneously representing 
a host of evidential relations, and the numerical relaxation 
algorithms standardly used in connectionist models are a 
very natural way to accomplish parallel satisfaction of the 
numerous constraints implicit in the networks that are 
created. 

Hobbs mounts a substantial challenge: Why bother 
with all the apparatus of ECHO when it might appear that a 
"naive method" that simply counts propositions does just 
as well? The naive method evaluates a theory by subtract­
ing the number of hypotheses it uses from the number of 
pieces of evidence it explains; in Hobb's notation, this is 
#E - #H. There are, however, an unlimited number of 
cases in which ECHO yields a conclusion different from the 
naive method. To take one of the simplest, consider a 
theory, Tl, consisting of hypotheses Hl and H2, which 
are both used together to explain evidence E 1 and E2; 
that is, Hl and H2 together explain El, and together 
explain E2. The alternative explanations are H3 and H4, 
but H3 explains El alone and H4 explains E2 alone. 
Suppose that Hl contradicts H3 and H2 contradicts H4. 
Tl is more unified than the other singleton hypotheses, 
and ECHO indeed prefers them, despite the fact that the 
naive method calculates # E - # H as O in both cases. So 
even independent of questions of being explained and 
analogy, the naive method is not equivalent to ECHO. The 
divergence is even clearer in the examples discussed in 
section 4.3 of the target article and in relation to Reggia 
above. I have already responded to attempts by Hobbs 
and Josephson to downplay the significance of analogy 
and of hypotheses being explained by other hypotheses. 

Bereiter & Scardamalia notice an important problem 
that arises in ECHO when several hypotheses compete 
against each other: A hypothesis, Hl, can get activation 
just by virtue of contradicting another hypothesis, H2, 
that gets negative activation because it is contradicted by 
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a better hypothesis, H3. Thus Hl illicitly gets help from 
H3, because H3 drives H2 down, which activates Hl. 
There are two ways of dealing with this problem, one by a 
trivial technical adjustment and the other by enriching 
the input. One can often expand the input to notice 
contradictions that were previously omitted. I do not see 
why Bereiler & Scardamalia's Satanic hypothesis ("The 
Devil is responsible for differences") cannot be construed 
as contradicting the hypotheses of evolution and natural 
selection, once the purported explanatory role of the 
Satanic hypothesis is further spelled out. On the technical 
side, the Common LISP version of ECHO allows one to set 
an output threshold so that once the activation of a unit 
drops below that threshold, ii no longer has any effect on 
the activations of other units. In the runs of ECHO we have 
done so far, the threshold is effectively ignored by setting 
it at -1, the minimum activation level, but in simulations 
using the analogy-mapping program ACME (Holyoak & 
Thagard, in press), we routinely set the threshold at 0. 
This is because in ACME, as in Bereiter & Scardamalia' s 
example, there are often multiple competing hypotheses, 
and it is necessary to prevent a poor hypothesis from 
getting accepted just because it contradicts one that is 
even worse. So in cases where there are more than two 
competing hypotheses, one can set the output threshold 
at 0, preventing the badness of one hypothesis from 
helping others that contradict it. 

Simon compares ECHO unfavorably with STAHL, an 
impressive program that infers chemical components 
from descriptions of reactions in terms of inputs and 
outputs. The major distinction between ECHO and STAHL 
is obviously that STAHL is a discovery program whereas 
ECHO models evaluation. As I have frequently stressed, 
ECHO does not generate hypotheses; a more appropriate 
comparison might be STAHL versus the tag team of ECHO 
and PI (Thagard 1988a), which does some simple forms of 
abduction, although PI has not been applied to chemical 
examples. Independent of discovery, it should be clear 
that ECHO does more complicated kinds of theory evalua­
tion than STAHL. STAHL only considers pieces of evi­
dence based on the inputs and outputs of reactions, and 
even here it is historically limited. As I have summarized 
elsewhere (Thagard, in press b), Lavoisier's development 
of the oxygen theory took place over several years and 
clearly involved processes that go well beyond what 
STAHL is capable of. For example, the first input state­
ment listed by Simon is 

(reacts inputs {charcoal air} outputs {phlogiston ash air}). 

This is clearly not a statement of evidence, because 
phlogiston is not observable (because, we would now say, 
it does not exist). This statement should really be treated 
as a hypothesis to be evaluated on the basis of what is in 
fact observed. Lavoisier's own writings show that he was 
dealing with data that went well beyond simple descrip­
tions of inputs and outputs. Many of these involved 
quantitative relations - for example, that things gain 
weight when they undergo combustion or calcination. 
ECHO is undoubtedly inferior to STAHL in not considering 
the content of propositions, a consideration that is crucial 
for generating explanations and hypotheses, but ECHO is 
superior in that it is not restricted to a single domain or a 
simple method of hypothesis evaluation. It would be 
presumptuous to say of either ECHO or STAHL that it 
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"carries out genuine reasoning." STAHL has its strengths, 
but ECHO is a much more comprehensive model of the 
process of,theory evaluation. 

Zytkow, Simon's collaborator on STAHL, appropriately 
suggests that STAHL and the similar program GLAUBER 

can be used to generate input for ECHO. These programs 
can then be used to generate the hypotheses that ECHO 
evaluates, although they seem lo me loo limited to 
substantiate Zytkow' s claim to generate "most of' this 
input. Still, the general account is right, that discovery 
programs like STAHL should be combined with evaluation 
programs like ECHO. 

Zytkow also raises the question of whether TEC and 
ECHO could explain not just why Lavoisier thought his 
oxygen theory was best but why proponents of the phlo­
giston theory changed over to the oxygen theory. As he 
points out, the phlogiston theory was not static and was 
modified in the lace of such discoveries as oxygen (de­
phlogisticated air) and hydrogen, which some theorists 
identified with phlogiston. I do not know whether the 
historical record is rich enough to trace the development 
of some of these phlogistinians, but I do not see any 
reason why ECHO could not be used to chart their devel­
opment toward the oxygen theory as they gradually came 
to see it as more and more coherent. 

4. Psychological adequacy 

I agree with Klayman & Hogarth that the ECHO analyses 
presented in the target article do not constitute good tests 
of the psychological validity of TEC and ECHO. Such tests 
will have lo be provided by controlled psychological 
experiments. In addition, efforts should be made to see 
whether ECHO naturally models some of the psychologi­
cal effects that Klayman & Hogarth mention. Ranney and 
Thagard (1988) is just the beginning of what I hope will be 
a series of experiments pinning the empirical side of 
ECHO down more effectively. 

Earle also notes some of the problems involved in 
testing ECHo's psychological validity. Researchers who 
try to test ECHO will have lo be sensitive to the problems 
of input representation and free parameters. The latter is 
probably most easily dealt with, because the default 
parameters in ECHO have been applied to such a wide 
range of cases that it would seem fair to expect them to 
apply also to the results of new psychological experi­
ments. Divining the belief systems and explanatory co­
herence relations of subjects will of course be difficult. 
But there is at least the promise of a series of psychologi­
cal experiments by different researchers based on TEC 
and ECHO. 

Cheng & Keane suggest two modifications they deem 
essential if TEC and ECHO are lo be psychologically 
adequate. First, my account seems to them too holistic 
and parallel; this view is based on the grounds that people 
approach problems of theory evaluation in a much more 
piecemeal fashion. It is undoubtedly true that people do 
not consciously consider all the hypotheses and evidence 
simultaneously, and probably could not do so because of 
limitations of short-term memory. My assumption, how­
ever, is that evaluations of the explanatory coherence of a 
set of propositions occurs unconsciously, and at this level 
there is no reason to assume that it cannot be fully 
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parallel. People make implicit judgments that something 
"makes sense" to them, based, I would argue, on this sort 
of holistic judgment. A full cognitive model would inte­
grate ECHO with the processes of attention and conscious 
deliberation that Cheng & Keane rightly point to, hut I 
see no serious problems in accomplishing the integration. 

Chi raises the intriguing possibility that TEC and ECHO 
could provide a "transition mechanism" to explain con­
ceptual change in ordinary people, particularly the radi­
cal restructuring that some psychologists have attributed 
to children. ECHO does help lo understand how revolu­
tionary conceptual change can take place in science 
(Thagard, in press b; Thagard & Nowak, in press), but the 
jury is still out concerning how similar such change is to 
what children undergo. By looking at scientific examples, 
I have been able to specify the transformations in concep­
tual and explanatory structures that have taken place in 
several scientific revolutions, whereas most of the discus­
sions in the literature in developmental psychology are 
vaguer. Over the next few years, I expect that much 
progress will be made in determining the similarities and 
differences between scientists' and children's conceptual 
changes, once both are described more fully than has so 
far occurred. 

Chi raises a number of important problems for my 
account as a full psychological model. Aspects of concep­
tual change that may be crucial include the realization 
that a particular hypothesis explains a particular piece of 
evidence. Chi suggests that someone who disagrees with 
a hypothesis may well resist encoding a piece of evidence 
as explained by the hypothesis. This is a psychological 
phenomenon that goes well beyond TEC and ECHO, and 
research is very much needed to see whether it can be 
modeled and to what extent ii interferes with the applica­
tion of considerations of explanatory coherence. Perhaps, 
as Bereiter & Scardamalia suggest, people can be taught 
not to resist alternative explanations and even to seek 
them out, just as graduate students are taught to eschew 
dogmatism. The empirical question concerns not just 
whether people are much worse than ECHO in integrating 
multiple pieces of evidence, but also whether they can be 
taught to be better at it. 

I am excited that Bereiter & Scardamalia have had 
some success with 11-year-olds using ECHO, and am not 
surprised at the difficulties that arise. I agree that apply­
ing ECHO is problematic in domains where much of what 
is at issue is whether the evidence is any good. Our 
attempt lo apply ECHO to the debate about parapsycholo­
gy faltered because most of the issues there concern the 
quality of the experiments rather than the explanatory 
coherence of competing theories. TEC does not purport to 
be a general theory of inference, and in particular it does 
not apply to the statistical and methodological inferences 
that underlie data analysis. What Bereiler & Scardamalia 
call "contextual facts" figure in some of my examples, but 
not to the same degree as in theirs. One can easily 
imagine a con artist weaving a ridiculous hypothesis into a 
blanket of undisputed facts in such a way that a person 
fails to evaluate the hypothesis, merely seeing it as 
making sense with respect to the rest of the information. 
People may well be susceptible to this kind of strategy to 
an extent that would undermine their use of evidence and 
considerations of explanatory coherence. But we know 
that people can learn to get better at statistical reasoning, 
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and Bereiter & Scardamalia give us reason to hope that 
even children can be taught to evaluate hypotheses more 
effectively. 

Read & Miller propose very inviting avenues for ex­
ploring the application of TEC and ECHO to social phe­
nomena. Although I am enthusiastic about the research 
they -propose, I want to offer a few words of caution 
concerning potential applications of explanatory co­
herence ideas to the phenomena they consider. First, 
investigators should be careful to distinguish explanatory 
from other notions of coherence. It would be illegitimate 
to give TEC or ECHO credit for accounting for the results of 
experiments that tapped into coherence phenomena that 
were independent of explanation. Second, as several 
commentators have suggested, more work needs to be 
done by researchers in psychology as well as in philoso­
phy and AI concerning what explanations are. The knowl­
edge structure approach advocated by Read will probably 
not constitute a full account of explanation. Nevertheless, 
I look forward to the results of Read & Millers experi­
ments, which I hope will suggest interesting extensions 
and revisions of the ECHO model. 

I sum, I see several appealing avenues for continuing 
work on explanatory coherence. The most wide-open 
road is psychological experimentation to evaluate the 
adequacy of TEC and ECHO as accounts of human cogni­
tion. Theoretical development is also highly desirable, 
particularly in relation to the construction of a cognitive 
theory of explanation. Theory development should occur 
in the context of an attempt to develop a fully integrated 
computational model of the generation as well as the 
evaluation of explanatory hypotheses. Perhaps someday 
an ECHO analysis of TEC will show that explanatory co­
herence theory performs well by its own standards. 
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