J. Willard Marriott Library University of Utah Electronic Reserve Course Materials

The copyright law of the United States (Title 17, United States Code), governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction, which is not to be used for any purpose other than private study, scholarship, or research. If a user makes a request for. or later uses a photocopy or reproduction for purposes in excess of "fair use", that user may be liable for copyright infringment.

INTERNATIONAL ENCYCLOPEDIA of UNIFIED SCIENCE

The Structure of Scientific Revolutions

Second Edition, Enlarged

Thomas S. Kuhn

VOLUMES I AND II + FOUNDATIONS OF THE UNITY OF SCIENCE

VOLUME II · NUMBER 2

International Encyclopedia of **Unified Science**

Editor-in-Chief Otto Neurath Associate Editors Rudolf Carnap Charles Morris

Foundations of the Unity of Science

(Volumes I-II of the Encyclopedia)

Committee of Organization

RUDOLF (Carnap
PHILIPP]	Frank
JOERCEN	JOERGENSEN

CHARLES MORRIS **OTTO NEURATH** LOUIS ROUGIER

Advisory Committee

R. von Mises
G. MANNOURY
Ernest Nagel
Arne Naess
HANS REICHENBACH
ABEL REY
BERTRAND RUSSELL
L. SUSAN STEBBING
Alfred Tarski
EDWARD C. TOLMAN
JOSEPH H. WOODGER

THE UNIVERSITY OF CHICAGO PRESS, CHICAGO 60637 THE UNIVERSITY OF CHICAGO PRESS, LTD., LONDON

© 1962, 1970 by The University of Chicago. All rights reserved. Published 1962. Second Edition, enlarged, 1970 Printed in the United States of America

> 81 80 79 78 11 10 9 8

ISBN: 0-226-45803-2 (clothbound); 0-226-45804-0 (paperbound) Library of Congress Catalog Card Number: 79-107472

International Encyclopedia of Unified Science

Volume 2 · Number 2

The Structure of Scientific Revolutions

Thomas S. Kuhn

Contents:

	Preface	v	
I.	INTRODUCTION: A ROLE FOR HISTORY	1	
II.	THE ROUTE TO NORMAL SCIENCE	10	
III.	THE NATURE OF NORMAL SCIENCE	23 🗸	
IV.	Normal Science as Puzzle-solving	35 🗸	
V.	The Priority of Paradicms	43	
VI.	ANOMALY AND THE EMERGENCE OF SCIENTIFIC DIS-		
	COVERIES	52	
VII.	Crisis and the Emergence of Scientific Theories	66	
VIII.	THE RESPONSE TO CRISIS	77	
IX.	. The Nature and Necessity of Scientific Revolu-		
	T IONS	92	
X.	Revolutions as Changes of World View	111	
XI.	THE INVISIBILITY OF REVOLUTIONS	136	
XII.	THE RESOLUTION OF REVOLUTIONS	144	
XIII.	PROCRESS THROUGH REVOLUTIONS	160	
	Postscript-1969	174	

The Nature and Necessity of Scientific Revolutions

IX. The Nature and Necessity of Scientific Revolutions

These remarks permit us at last to consider the problems that provide this essay with its title. What are scientific revolutions, and what is their function in scientific development? Much of the answer to these questions has been anticipated in earlier sections. In particular, the preceding discussion has indicated that scientific revolutions are here taken to be those non-cumulative developmental episodes in which an older paradigm is replaced in whole or in part by an incompatible new one. There is more to be said, however, and an essential part of it can be introduced by asking one further question. Why should a change of paradigm be called a revolution? In the face of the vast and essential differences between political and scientific development, what parallelism can justify the metaphor that finds revolutions in both?

One aspect of the parallelism must already be apparent. Political revolutions are inaugurated by a growing sense, often restricted to a segment of the political community, that existing institutions have ceased adequately to meet the problems posed by an environment that they have in part created. In much the same way, scientific revolutions are inaugurated by a growing sense, again often restricted to a narrow subdivision of the scientific community, that an existing paradigm has ceased to function adequately in the exploration of an aspect of nature to which that paradigm itself had previously led the way. In both political and scientific development the sense of malfunction that can lead to crisis is prerequisite to revolution. Furthermore, though it admittedly strains the metaphor, that parallelism holds not only for the major paradigm changes, like those attributable to Copernicus and Lavoisier, but also for the far smaller ones associated with the assimilation of a new sort of phenomenon, like oxygen or X-rays. Scientific revolutions, as we noted at the end of Section V, need seem revolutionary only to Vol. II, No. 2

those whose paradigms are affected by them. To outsiders they may, like the Balkan revolutions of the early twentieth century, seem normal parts of the developmental process. Astronomers, for example, could accept X-rays as a mere addition to knowledge, for their paradigms were unaffected by the existence of the new radiation. But for men like Kelvin, Crookes, and Roentgen, whose research dealt with radiation theory or with cathode ray tubes, the emergence of X-rays necessarily violated one paradigm as it created another. That is why these rays could be discovered only through something's first going wrong with normal research.

This genetic aspect of the parallel between political and scientific development should no longer be open to doubt. The parallel has, however, a second and more profound aspect upon which the significance of the first depends. Political revolutions aim to change political institutions in ways that those institutions themselves prohibit. Their success therefore necessitates the partial relinquishment of one set of institutions in favor of another, and in the interim, society is not fully governed by institutions at all. Initially it is crisis alone that attenuates the role of political institutions as we have already seen it attenuate the role of paradigms. In increasing numbers individuals become increasingly estranged from political life and behave more and more eccentrically within it. Then, as the crisis deepens, many of these individuals commit themselves to some concrete proposal for the reconstruction of society in a new institutional framework. At that point the society is divided into competing camps or parties, one seeking to defend the old institutional constellation, the others seeking to institute some new one. And, once that polarization has occurred, political recourse fails. Because they differ about the institutional matrix within which political change is to be achieved and evaluated, because they acknowledge no supra-institutional framework for the adjudication of revolutionary difference, the parties to a revolutionary conflict must finally resort to the techniques of mass persuasion, often including force. Though revolutions have had a vital role in the evolution of political institutions, that role depends upon Vol. II, No. 2

their being partially extrapolitical or extrainstitutional events.

The remainder of this essay aims to demonstrate that the historical study of paradigm change reveals very similar characteristics in the evolution of the sciences. Like the choice between competing political institutions, that between competing paradigms proves to be a choice between incompatible modes of community life. Because it has that character, the choice is not and cannot be determined merely by the evaluative procedures characteristic of normal science, for these depend in part upon a particular paradigm, and that paradigm is at issue. When paradigms enter, as they must, into a debate about paradigm choice, their role is necessarily circular. Each group uses its own paradigm to argue in that paradigm's defense.

The resulting circularity does not, of course, make the arguments wrong or even ineffectual. The man who premises a paradigm when arguing in its defense can nonetheless provide a clear exhibit of what scientific practice will be like for those who adopt the new view of nature. That exhibit can be immensely persuasive, often compellingly so. Yet, whatever its force, the status of the circular argument is only that of persuasion. It cannot be made logically or even probabilistically compelling for those who refuse to step into the circle. The premises and values shared by the two parties to a debate over paradigms are not sufficiently extensive for that. As in political revolutions, so in paradigm choice-there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.

ł.

To discover why this issue of paradigm choice can never be unequivocally settled by logic and experiment alone, we must shortly examine the nature of the differences that separate the proponents of a traditional paradigm from their revolutionary successors. That examination is the principal object of this section and the next. We have, however, already noted numerous examples of such differences, and no one will doubt that history can supply many others. What is more likely to be doubted than their existence—and what must therefore be considered first—is that such examples provide essential information about the nature of science. Granting that paradigm rejection has been a historic fact, does it illuminate more than human credulity and confusion? Are there intrinsic reasons why the assimilation of either a new sort of phenomenon or a new scientific theory must demand the rejection of an older paradigm?

First notice that if there are such reasons, they do not derive from the logical structure of scientific knowledge. In principle, a new phenomenon might emerge without reflecting destructively upon any part of past scientific practice. Though discovering life on the moon would today be destructive of existing paradigms (these tell us things about the moon that seem incompatible with life's existence there), discovering life in some less well-known part of the galaxy would not. By the same token, a new theory does not have to conflict with any of its predecessors. It might deal exclusively with phenomena not previously known, as the quantum theory deals (but, significantly, not exclusively) with subatomic phenomena unknown before the twentieth century. Or again, the new theory might be simply a higher level theory than those known before, one that linked together a whole group of lower level theories without substantially changing any. Today, the theory of energy conservation provides just such links between dynamics, chemistry, electricity, optics, thermal theory, and so on. Still other compatible relationships between old and new theories can be conceived. Any and all of them might be exemplified by the historical process through which science has developed. If they were, scientific development would be genuinely cumulative. New sorts of phenomena would simply disclose order in an aspect of nature where none had been seen before. In the evolution of science new knowledge would replace ignorance rather than replace knowledge of another and incompatible sort.

Of course, science (or some other enterprise, perhaps less effective) might have developed in that fully cumulative manner. Many people have believed that it did so, and most still

seem to suppose that cumulation is at least the ideal that historical development would display if only it had not so often been distorted by human idiosyncrasy. There are important reasons for that belief. In Section X we shall discover how closely the view of science-as-cumulation is entangled with a dominant epistemology that takes knowledge to be a construction placed directly upon raw sense data by the mind. And in Section XI we shall examine the strong support provided to the same historiographic schema by the techniques of effective science pedagogy. Nevertheless, despite the immense plausibility of that ideal image, there is increasing reason to wonder whether it can possibly be an image of science. After the pre-paradigm period the assimilation of all new theories and of almost all new sorts of phenomena has in fact demanded the destruction of a prior paradigm and a consequent conflict between competing schools of scientific thought. Cumulative acquisition of unanticipated novelties proves to be an almost non-existent exception to the rule of scientific development. The man who takes historic fact seriously must suspect that science does not tend toward the ideal that our image of its cumulativeness has suggested. Perhaps it is another sort of enterprise.

If, however, resistant facts can carry us that far, then a second look at the ground we have already covered may suggest that cumulative acquisition of novelty is not only rare in fact but improbable in principle. Normal research, which is cumulative, owes its success to the ability of scientists regularly to select problems that can be solved with conceptual and instrumental techniques close to those already in existence. (That is why an excessive concern with useful problems, regardless of their relation to existing knowledge and technique, can so easily inhibit scientific development.) The man who is striving to solve a problem defined by existing knowledge and technique is not, however, just looking around. He knows what he wants to achieve, and he designs his instruments and directs his thoughts accordingly. Unanticipated novelty, the new discovery, can emerge only to the extent that his anticipations about nature and his instruments prove wrong. Often the importance of the resulting discovery will itself be proportional to the extent and stubbornness of the anomaly that foreshadowed it. Obviously, then, there must be a conflict between the paradigm that discloses anomaly and the one that later renders the anomaly lawlike. The examples of discovery through paradigm destruction examined in Section VI did not confront us with mere historical accident. There is no other effective way in which discoveries might be generated.

1

The same argument applies even more clearly to the invention of new theories. There are, in principle, only three types of phenomena about which a new theory might be developed. The first consists of phenomena already well explained by existing paradigms, and these seldom provide either motive or point of departure for theory construction. When they do, as with the three famous anticipations discussed at the end of Section VII, the theories that result are seldom accepted, because nature provides no ground for discrimination. A second class of phenomena consists of those whose nature is indicated by existing paradigms but whose details can be understood only through further theory articulation. These are the phenomena to which scientists direct their research much of the time, but that research aims at the articulation of existing paradigms rather than at the invention of new ones. Only when these attempts at articulation fail do scientists encounter the third type of phenomena, the recognized anomalies whose characteristic feature is their stubborn refusal to be assimilated to existing paradigms. This type alone gives rise to new theories. Paradigms provide all phenomena except anomalies with a theory-determined place in the scientist's field of vision.

But if new theories are called forth to resolve anomalies in the relation of an existing theory to nature, then the successful new theory must somewhere permit predictions that are different from those derived from its predecessor. That difference could not occur if the two were logically compatible. In the process of being assimilated, the second must displace the first. Even a theory like energy conservation, which today seems a logical superstructure that relates to nature only through independent-

The Nature and Necessity of Scientific Revolutions

The Structure of Scientific Revolutions

ly established theories, did not develop historically without paradigm destruction. Instead, it emerged from a crisis in which an essential ingredient was the incompatibility between Newtonian dynamics and some recently formulated consequences of the caloric theory of heat. Only after the caloric theory had been rejected could energy conservation become part of science.¹ And only after it had been part of science for some time could it come to seem a theory of a logically higher type, one not in conflict with its predecessors. It is hard to see how new theories could arise without these destructive changes in beliefs about nature. Though logical inclusiveness remains a permissible view of the relation between successive scientific theories, it is a historical implausibility.

A century ago it would, I think, have been possible to let the case for the necessity of revolutions rest at this point. But today, unfortunately, that cannot be done because the view of the subject developed above cannot be maintained if the most prevalent contemporary interpretation of the nature and function of scientific theory is accepted. That interpretation, closely associated with early logical positivism and not categorically rejected by its successors, would restrict the range and meaning of an accepted theory so that it could not possibly conflict with any later theory that made predictions about some of the same natural phenomena. The best-known and the strongest case for this restricted conception of a scientific theory emerges in discussions of the relation between contemporary Einsteinian dynamics and the older dynamical equations that descend from Newton's Principia. From the viewpoint of this essay these two theories are fundamentally incompatible in the sense illustrated by the relation of Copernican to Ptolemaic astronomy: Einstein's theory can be accepted only with the recognition that Newton's was wrong. Today this remains a minority view.² We must therefore examine the most prevalent objections to it.

¹ Silvanus P. Thompson, Life of William Thomson Baron Kelvin of Largs (London, 1910), I, 266-81.

 2 See, for example, the remarks by P. P. Wiener in Philosophy of Science, XXV (1958), 298.

Vol. II, No. 2

The gist of these objections can be developed as follows. Relativistic dynamics cannot have shown Newtonian dynamics to be wrong, for Newtonian dynamics is still used with great success by most engineers and, in selected applications, by many physicists. Furthermore, the propriety of this use of the older theory can be proved from the very theory that has, in other applications, replaced it. Einstein's theory can be used to show that predictions from Newton's equations will be as good as our measuring instruments in all applications that satisfy a small number of restrictive conditions. For example, if Newtonian theory is to provide a good approximate solution, the relative velocities of the bodies considered must be small compared with the velocity of light. Subject to this condition and a few others, Newtonian theory seems to be derivable from Einsteinian, of which it is therefore a special case.

But, the objection continues, no theory can possibly conflict with one of its special cases. If Einsteinian science seems to make Newtonian dynamics wrong, that is only because some Newtonians were so incautious as to claim that Newtonian theory yielded entirely precise results or that it was valid at very high relative velocities. Since they could not have had any evidence for such claims, they betrayed the standards of science when they made them. In so far as Newtonian theory was ever a truly scientific theory supported by valid evidence, it still is. Only extravagant claims for the theory-claims that were never properly parts of science-can have been shown by Einstein to be wrong. Purged of these merely human extravagances, Newtonian theory has never been challenged and cannot be.

Some variant of this argument is quite sufficient to make any theory ever used by a significant group of competent scientists immune to attack. The much-maligned phlogiston theory, for example, gave order to a large number of physical and chemical phenomena. It explained why bodies burned—they were rich in phlogiston—and why metals had so many more properties in common than did their ores. The metals were all compounded from different elementary earths combined with phlogiston, and the latter, common to all metals, produced common prop-

erties. In addition, the phlogiston theory accounted for a number of reactions in which acids were formed by the combustion of substances like carbon and sulphur. Also, it explained the decrease of volume when combustion occurs in a confined volume of air—the phlogiston released by combustion "spoils" the elasticity of the air that absorbed it, just as fire "spoils" the elasticity of a steel spring.³ If these were the only phenomena that the phlogiston theorists had claimed for their theory, that theory could never have been challenged. A similar argument will suffice for any theory that has ever been successfully applied to any range of phenomena at all.

;

But to save theories in this way, their range of application must be restricted to those phenomena and to that precision of observation with which the experimental evidence in hand already deals.⁴ Carried just a step further (and the step can scarcely be avoided once the first is taken), such a limitation prohibits the scientist from claiming to speak "scientifically" about any phenomenon not already observed. Even in its present form the restriction forbids the scientist to rely upon a theory in his own research whenever that research enters an area or seeks a degree of precision for which past practice with the theory offers no precedent. These prohibitions are logically unexceptionable. But the result of accepting them would be the end of the research through which science may develop further.

By now that point too is virtually a tautology. Without commitment to a paradigm there could be no normal science. Furthermore, that commitment must extend to areas and to degrees of precision for which there is no full precedent. If it did not, the paradigm could provide no puzzles that had not already been solved. Besides, it is not only normal science that depends upon commitment to a paradigm. If existing theory binds the

⁴ Compare the conclusions reached through a very different sort of analysis by R. B. Braithwaite, *Scientific Explanation* (Cambridge, 1953), pp. 50-87, esp. p. 76. scientist only with respect to existing applications, then there can be no surprises, anomalies, or crises. But these are just the signposts that point the way to extraordinary science. If positivistic restrictions on the range of a theory's legitimate applicability are taken literally, the mechanism that tells the scientific community what problems may lead to fundamental change must cease to function. And when that occurs, the community will inevitably return to something much like its pre-paradigm state, a condition in which all members practice science but in which their gross product scarcely resembles science at all. Is it really any wonder that the price of significant scientific advance is a commitment that runs the risk of being wrong?

More important, there is a revealing logical lacuna in the positivist's argument, one that will reintroduce us immediately to the nature of revolutionary change. Can Newtonian dynamics really be derived from relativistic dynamics? What would such a derivation look like? Imagine a set of statements, E_1, E_2 , \ldots , E_n , which together embody the laws of relativity theory. These statements contain variables and parameters representing spatial position, time, rest mass, etc. From them, together with the apparatus of logic and mathematics, is deducible a whole set of further statements including some that can be checked by observation. To prove the adequacy of Newtonian dynamics as a special case, we must add to the E_i 's additional statements, like $(v/c)^2 \ll 1$, restricting the range of the parameters and variables. This enlarged set of statements is then manipulated to yield a new set, N_1, N_2, \ldots, N_m , which is identical in form with Newton's laws of motion, the law of gravity, and so on. Apparently Newtonian dynamics has been derived from Einsteinian, subject to a few limiting conditions.

Yet the derivation is spurious, at least to this point. Though the N_i 's are a special case of the laws of relativistic mechanics, they are not Newton's Laws. Or at least they are not unless those laws are reinterpreted in a way that would have been impossible until after Einstein's work. The variables and parameters that in the Einsteinian E_i 's represented spatial position, time, mass, etc., still occur in the N_i 's; and they there still repre-

⁸ James B. Conant, Overthrow of the Phlogiston Theory (Cambridge, 1950), pp. 13–16; and J. R. Partington, A Short History of Chemistry (2d ed.; London, 1951), pp. 85–88. The fullest and most sympathetic account of the phlogiston theory's achievements is by H. Metzger, Newton, Stahl, Boerhaave et la doctrine chimique (Paris, 1930), Part II.

Vol. II, No. 2

sent Einsteinian space, time, and mass. But the physical referents of these Einsteinian concepts are by no means identical with those of the Newtonian concepts that bear the same name. (Newtonian mass is conserved; Einsteinian is convertible with energy, Only at low relative velocities may the two be measured in the same way, and even then they must not be conceived to be the same.) Unless we change the definitions of the variables in the N_i 's, the statements we have derived are not Newtonian. If we do change them, we cannot properly be said to have derived Newton's Laws, at least not in any sense of "derive" now generally recognized. Our argument has, of course, explained why Newton's Laws ever seemed to work. In doing so it has justified, say, an automobile driver in acting as though he lived in a Newtonian universe. An argument of the same type is used to justify teaching earth-centered astronomy to surveyors. But the argument has still not done what it purported to do. It has not, that is, shown Newton's Laws to be a limiting case of Einstein's. For in the passage to the limit it is not only the forms of the laws that have changed. Simultaneously we have had to alter the fundamental structural elements of which the universe to which they apply is composed.

This need to change the meaning of established and familiar concepts is central to the revolutionary impact of Einstein's theory. Though subtler than the changes from geocentrism to heliocentrism, from phlogiston to oxygen, or from corpuscles to waves, the resulting conceptual transformation is no less decisively destructive of a previously established paradigm. We may even come to see it as a prototype for revolutionary reorientations in the sciences. Just because it did not involve the introduction of additional objects or concepts, the transition from Newtonian to Einsteinian mechanics illustrates with particular clarity the scientific revolution as a displacement of the conceptual network through which scientists view the world.

These remarks should suffice to show what might, in another philosophical climate, have been taken for granted. At least for scientists, most of the apparent differences between a discarded scientific theory and its successor are real. Though an out-ofdate theory can always be viewed as a special case of its up-todate successor, it must be transformed for the purpose. And the transformation is one that can be undertaken only with the advantages of hindsight, the explicit guidance of the more recent theory. Furthermore, even if that transformation were a legitimate device to employ in interpreting the older theory, the result of its application would be a theory so restricted that it could only restate what was already known. Because of its economy, that restatement would have utility, but it could not suffice for the guidance of research.

Let us, therefore, now take it for granted that the differences between successive paradigms are both necessary and irreconcilable. Can we then say more explicitly what sorts of differences these are? The most apparent type has already been illustrated repeatedly. Successive paradigms tell us different things about the population of the universe and about that population's behavior. They differ, that is, about such questions as the existence of subatomic particles, the materiality of light, and the conservation of heat or of energy. These are the substantive differences between successive paradigms, and they require no further illustration. But paradigms differ in more than substance, for they are directed not only to nature but also back upon the science that produced them. They are the source of the methods, problem-field, and standards of solution accepted by any mature scientific community at any given time. As a result, the reception of a new paradigm often necessitates a redefinition of the corresponding science. Some old problems may be relegated to another science or declared entirely "unscientific." Others that were previously non-existent or trivial may, with a new paradigm, become the very archetypes of significant scientific achievement. And as the problems change, so, often, does the standard that distinguishes a real scientific solution from a mere metaphysical speculation, word game, or mathematical play. The normal-scientific tradition that emerges from a scientific revolution is not only incompatible but often actually incommensurable with that which has gone before.

The impact of Newton's work upon the normal seventeenth-

102

century tradition of scientific practice provides a striking example of these subtler effects of paradigm shift. Before Newton was born the "new science" of the century had at last succeeded in rejecting Aristotelian and scholastic explanations expressed in terms of the essences of material bodies. To say that a stone fell because its "nature" drove it toward the center of the universe had been made to look a mere tautological word-play, something it had not previously been. Henceforth the entire flux of sensory appearances, including color, taste, and even weight, was to be explained in terms of the size, shape, position, and motion of the elementary corpuscles of base matter. The attribution of other qualities to the elementary atoms was a resort to the occult and therefore out of bounds for science. Molière caught the new spirit precisely when he ridiculed the doctor who explained opium's efficacy as a soporific by attributing to it a dormitive potency. During the last half of the seventeenth century many scientists preferred to say that the round shape of the opium particles enabled them to sooth the nerves about which they moved.⁵

In an earlier period explanations in terms of occult qualities had been an integral part of productive scientific work. Nevertheless, the seventeenth century's new commitment to mechanico-corpuscular explanation proved immensely fruitful for a number of sciences, ridding them of problems that had defied generally accepted solution and suggesting others to replace them. In dynamics, for example, Newton's three laws of motion are less a product of novel experiments than of the attempt to reinterpret well-known observations in terms of the motions and interactions of primary neutral corpuscles. Consider just one concrete illustration. Since neutral corpuscles could act on each other only by contact, the mechanico-corpuscular view of nature directed scientific attention to a brand-new subject of study, the alteration of particulate motions by collisions. Descartes announced the problem and provided its first putative

⁵ For corpuscularism in general, see Marie Boas, "The Establishment of the Mechanical Philosophy," Osiris, X (1952), 412-541. For the effect of particle-shape on taste, see *ibid.*, p. 483.

solution. Huyghens, Wren, and Wallis carried it still further, partly by experimenting with colliding pendulum bobs, but mostly by applying previously well-known characteristics of motion to the new problem. And Newton embedded their results in his laws of motion. The equal "action" and "reaction" of the third law are the changes in quantity of motion experienced by the two parties to a collision. The same change of motion supplies the definition of dynamical force implicit in the second law. In this case, as in many others during the seventeenth century, the corpuscular paradigm bred both a new problem and a large part of that problem's solution.⁶

Yet, though much of Newton's work was directed to problems and embodied standards derived from the mechanico-corpuscular world view, the effect of the paradigm that resulted from his work was a further and partially destructive change in the problems and standards legitimate for science. Gravity, interpreted as an innate attraction between every pair of particles of matter, was an occult quality in the same sense as the scholastics' "tendency to fall" had been. Therefore, while the standards of corpuscularism remained in effect, the search for a mechanical explanation of gravity was one of the most challenging problems for those who accepted the Principia as paradigm. Newton devoted much attention to it and so did many of his eighteenthcentury successors. The only apparent option was to reject Newton's theory for its failure to explain gravity, and that alternative, too, was widely adopted. Yet neither of these views ultimately triumphed. Unable either to practice science without the Principia or to make that work conform to the corpuscular standards of the seventeenth century, scientists gradually accepted the view that gravity was indeed innate. By the mideighteenth century that interpretation had been almost universally accepted, and the result was a genuine reversion (which is not the same as a retrogression) to a scholastic standard. Innate attractions and repulsions joined size, shape, posi-

⁶ R. Dugas, La mécanique au XVII^e siècle (Neuchatel, 1954), pp. 177-85, 284-98, 345-56.

tion, and motion as physically irreducible primary properties of matter. $^{\imath}$

The resulting change in the standards and problem-field of physical science was once again consequential. By the 1740's, for example, electricians could speak of the attractive "virtue" of the electric fluid without thereby inviting the ridicule that had greeted Molière's doctor a century before. As they did so, electrical phenomena increasingly displayed an order different from the one they had shown when viewed as the effects of a mechanical effluvium that could act only by contact. In particular, when electrical action-at-a-distance became a subject for study in its own right, the phenomenon we now call charging by induction could be recognized as one of its effects. Previously, when seen at all, it had been attributed to the direct action of electrical "atmospheres" or to the leakages inevitable in any electrical laboratory. The new view of inductive effects was, in turn, the key to Franklin's analysis of the Leyden jar and thus to the emergence of a new and Newtonian paradigm for electricity. Nor were dynamics and electricity the only scientific fields affected by the legitimization of the search for forces innate to matter. The large body of eighteenth-century literature on chemical affinities and replacement series also derives from this supramechanical aspect of Newtonianism. Chemists who believed in these differential attractions between the various chemical species set up previously unimagined experiments and searched for new sorts of reactions. Without the data and the chemical concepts developed in that process, the later work of Lavoisier and, more particularly, of Dalton would be incomprehensible.⁸ Changes in the standards governing permissible problems, concepts, and explanations can transform a science. In the next section I shall even suggest a sense in which they transform the world.

Other examples of these nonsubstantive differences between successive paradigms can be retrieved from the history of any science in almost any period of its development. For the moment let us be content with just two other and far briefer illustrations. Before the chemical revolution, one of the acknowledged tasks of chemistry was to account for the qualities of chemical substances and for the changes these qualities underwent during chemical reactions. With the aid of a small number of elementary "principles"-of which phlogiston was one-the chemist was to explain why some substances are acidic, others metalline, combustible, and so forth. Some success in this direction had been achieved. We have already noted that phlogiston explained why the metals were so much alike, and we could have developed a similar argument for the acids. Lavoisier's reform, however, ultimately did away with chemical "principles," and thus ended by depriving chemistry of some actual and much potential explanatory power. To compensate for this loss, a change in standards was required. During much of the nineteenth century failure to explain the qualities of compounds was no indictment of a chemical theory.9

Or again, Clerk Maxwell shared with other nineteenth-century proponents of the wave theory of light the conviction that light waves must be propagated through a material ether. Designing a mechanical medium to support such waves was a standard problem for many of his ablest contemporaries. His own theory, however, the electromagnetic theory of light, gave no account at all of a medium able to support light waves, and it clearly made such an account harder to provide than it had seemed before. Initially, Maxwell's theory was widely rejected for those reasons. But, like Newton's theory, Maxwell's proved difficult to dispense with, and as it achieved the status of a paradigm, the community's attitude toward it changed. In the early decades of the twentieth century Maxwell's insistence upon the existence of a mechanical ether looked more and more like lip service, which it emphatically had not been, and the attempts to design such an ethereal medium were abandoned. Scientists no

⁹ E. Meyerson, Identity and Reality (New York, 1930), chap. x.

⁷ I. B. Cohen, Franklin and Newton: An Inquiry into Speculative Newtonian Experimental Science and Franklin's Work in Electricity as an Example Thereof (Philadelphia, 1956), chaps. vi-vii.

⁸ For electricity, see *ibid*, chaps. viii-ix. For chemistry, see Metzger, op. cit., Part I.

Vol. II, No. 2

longer thought it unscientific to speak of an electrical "displacement" without specifying what was being displaced. The result, again, was a new set of problems and standards, one which, in the event, had much to do with the emergence of relativity theory.¹⁰

.

These characteristic shifts in the scientific community's conception of its legitimate problems and standards would have less significance to this essay's thesis if one could suppose that they always occurred from some methodologically lower to some higher type. In that case their effects, too, would seem cumulative. No wonder that some historians have argued that the history of science records a continuing increase in the maturity and refinement of man's conception of the nature of science.¹¹ Yet the case for cumulative development of science's problems and standards is even harder to make than the case for cumulation of theories. The attempt to explain gravity, though fruitfully abandoned by most eighteenth-century scientists, was not directed to an intrinsically illegitimate problem; the objections to innate forces were neither inherently unscientific nor metaphysical in some pejorative sense. There are no external standards to permit a judgment of that sort. What occurred was neither a decline nor a raising of standards, but simply a change demanded by the adoption of a new paradigm. Furthermore, that change has since been reversed and could be again. In the twentieth century Einstein succeeded in explaining gravitational attractions, and that explanation has returned science to a set of canons and problems that are, in this particular respect, more like those of Newton's predecessors than of his successors. Or again, the development of quantum mechanics has reversed the methodological prohibition that originated in the chemical revolution. Chemists now attempt, and with great success, to explain the color, state of aggregation, and other qualities of the substances used and produced in their laboratories. A similar rever-

¹⁰ E. T. Whittaker, A History of the Theories of Aether and Electricity, II (London, 1953), 28-30.

Vol. II, No. 2

sal may even be underway in electromagnetic theory. Space, in contemporary physics, is not the inert and homogenous substratum employed in both Newton's and Maxwell's theories; some of its new properties are not unlike those once attributed to the ether; we may someday come to know what an electric displacement is.

By shifting emphasis from the cognitive to the normative functions of paradigms, the preceding examples enlarge our understanding of the ways in which paradigms give form to the scientific life. Previously, we had principally examined the paradigm's role as a vehicle for scientific theory. In that role it functions by telling the scientist about the entities that nature does and does not contain and about the ways in which those entities behave. That information provides a map whose details are elucidated by mature scientific research. And since nature is too complex and varied to be explored at random, that map is as essential as observation and experiment to science's continuing development. Through the theories they embody, paradigms prove to be constitutive of the research activity. They are also, however, constitutive of science in other respects, and that is now the point. In particular, our most recent examples show that paradigms provide scientists not only with a map but also with some of the directions essential for map-making. In learning a paradigm the scientist acquires theory, methods, and standards together, usually in an inextricable mixture. Therefore, when paradigms change, there are usually significant shifts in the criteria determining the legitimacy both of problems and of proposed solutions.

That observation returns us to the point from which this section began, for it provides our first explicit indication of why the choice between competing paradigms regularly raises questions that cannot be resolved by the criteria of normal science. To the extent, as significant as it is incomplete, that two scientific schools disagree about what is a problem and what a solution, they will inevitably talk through each other when debating the relative merits of their respective paradigms. In the partially circular arguments that regularly result, each paradigm will be

¹¹ For a brilliant and entirely up-to-date attempt to fit scientific development into this Procrustean bed, see C. C. Gillispie, *The Edge of Objectivity: An Essay in the History of Scientific Ideas* (Princeton, 1960).

shown to satisfy more or less the criteria that it dictates for itself and to fall short of a few of those dictated by its opponent. There are other reasons, too, for the incompleteness of logical contact that consistently characterizes paradigm debates. For example, since no paradigm ever solves all the problems it defines and since no two paradigms leave all the same problems unsolved, paradigm debates always involve the question: Which problems is it more significant to have solved? Like the issue of competing standards, that question of values can be answered only in terms of criteria that lie outside of normal science altogether, and it is that recourse to external criteria that most obviously makes paradigm debates revolutionary. Something even more fundamental than standards and values is, however, also at stake. I have so far argued only that paradigms are constitutive of science. Now I wish to display a sense in which they are constitutive of nature as well.

Vol. II, No. 2 110

X. Revolutions as Changes of World View

Examining the record of past research from the vantage of contemporary historiography, the historian of science may be tempted to exclaim that when paradigms change, the world itself changes with them. Led by a new paradigm, scientists adopt new instruments and look in new places. Even more important, during revolutions scientists see new and different things when looking with familiar instruments in places they have looked before. It is rather as if the professional community had been suddenly transported to another planet where familiar objects are seen in a different light and are joined by unfamiliar ones as well. Of course, nothing of quite that sort does occur: there is no geographical transplantation; outside the laboratory everyday affairs usually continue as before. Nevertheless, paradigm changes do cause scientists to see the world of their research-engagement differently. In so far as their only recourse to that world is through what they see and do, we may want to say that after a revolution scientists are responding to a different world.

It is as elementary prototypes for these transformations of the scientist's world that the familiar demonstrations of a switch in visual gestalt prove so suggestive. What were ducks in the scientist's world before the revolution are rabbits afterwards. The man who first saw the exterior of the box from above later sees its interior from below. Transformations like these, though usually more gradual and almost always irreversible, are common concomitants of scientific training. Looking at a contour map, the student sees lines on paper, the cartographer a picture of a terrain. Looking at a bubble-chamber photograph, the student sees confused and broken lines, the physicist a record of familiar subnuclear events. Only after a number of such transformations of vision does the student become an inhabitant of the scientist's world, seeing what the scientist sees and responding as the scientist does. The world that the student then enters